Journal of Organometallic Chemistry, 404 (1991) 107–212 Elsevier Sequoia S.A., Lausanne JOM 21437AS

> ORGANOIRON CHEMISTRY Annual Survey for the Year 1989*

ROBERT C. KERBER Department of Chemistry State University of New York at Stony Brook Long Island, N.Y. 11794-3400 (U.S.A.)

CONTENT	S
---------	---

1.	Introduction	109
2.	Reference works	109
3.	Reactions of "naked" iron atoms and ions	110
4.	Compounds with η^1 -carbon ligands	112
	a. Hydrido-, alkyl- and aryliron compounds, R_Fe	112
	b. Iron monocarbonyls, e.g. L ₄ FeCO	114
	c. Iron dicarbonyls, e.g. L ₂ Fe(CO) ₂	116
	d. Iron tricarbonyls, e.g. $L_2Fe(CO)_2$	118
	e. Iron tetracarbonyls, e.g. LFe(CO) _A and R_2 Fe(CO) _A .	120
	f. Carbene complexes R ₂ C=FeL ₄	123
	g. Some reactions and properties of $Fe(CO)_5$	123
5.	n^2 -Alkene and n^3 -allyl complexes	124
6.	Compounds with n ⁴ -ligands	126
	a. Trimethylenemethyl complexes	126
	b. Complexes of acyclic dienes, including beterodienes.	127
	c. Complexes of cyclic dienes	191
7.	n ⁵ -Dienvl complexes	135
	a. Compounds with open nentadienvl ligands	195
	b Cuclopentedienuldicarbonuliron hudride (Enu) and	100
	s. cyclopencadlenyldicarbonyllion nydride (rpn/ and	190
		144
	c. rp-acyr, -arkyr, and -carbene compress	144
	a. Cyclopentadienyliron derivatives of η^- to η^- -ligands	153
8.	Compounds with η° -arene ligands	156
9.	Bimetallic compounds	162
	a. Diiron compounds, derivatives of Fe ₂ (CO) ₉	162
	b. Derivatives of Cp ₂ Fe ₂ (CO) ₄	174
	c. Heterobimetallic compounds	177

* 1988 Survey: J. Organomet, Chem. 380 (1989) 77-167.

References p. 191

0022-328X/91/\$37.10 ©1991 - Elsevier Sequoia S.A.

10.	Trinuclear cluster compou						nds	•	•	•	•	•	•	•	•	•	•	17 9
	a.	Fe ₃ o	clust	ers	•	•	•	•	•	•	•	•	•	•	•	•		179
	b.	Fe₂M	clus	ters	•	•	•	•	•	•	•	•	•	•	•	•	•	182
	с.	FeM ₂	clus	ters	•	•	•	•	•	•	•	•	•	•	•	•	•	184
11.	Tetr	a- and	n pol	ynuc:	lear	c 1	ust	er	con	ip o u	nds	•	•	•	•	•		185
12.	Refe	rences	5.		•	•	•	•	•	•	•	•	•	•		•	•	191

LIST OF ABBREVIATIONS USED

acac	acetylacetonate, (MeCO) ₂ CH
An	any arene ring, such as benzene, C ₆ H ₆
Ar	an aryl ring, such as p -tolyl, MeC ₆ H ₄ -
bpy	2,2'-bipyridyl
COD	1,5-cyclooctadiene
Ср	cyclopentadienyl, C ₅ H ₅
Cp'	methylcyclopentadienyl, C ₅ H ₄ CH ₃
Cp*	pentamethylcyclopentadienyl, C ₅ Me ₅
DEPE	1,2-bis(diethylphosphino)ethane
DMF	N,N-dimethylformamide
DMPE	l,2-bis(dimethylphosphino)ethane
DMPM	bis(dimethylphosphino)methane
DPPE	l,2-bis(diphenylphosphino)ethane
DPPM	bis(diphenylphosphino)methane
Е	an ester group, usually carbethoxy or carbomethoxy
El ⁺	an electrophile
Et	ethyl, C _{2^H5} -
Fp	cyclopentadienyldicarbonyliron, CpFe(CO) ₂ -
Fp'	cyclopentadienyl(carbonyl)(triphenylphosphine)iron
Fp*	(pentamethylcyclopentadienyl)dicarbonyliron
Ft	the tricarbonyliron group, Fe(CO) ₃
L	a 2-electron donor ligand, such as a phosphine
LAH	lithium aluminum hydride
м	any transition metal
Me	methyl, CH ₃ -
Nu	a nucleophile
Ph	phenyl, C ₆ H ₅ -, also shown as \emptyset in structures
Por	any porphyrin ligand coordinated as a dianion
ppn ⁺	Ph ₃ P=N=PPh ₃ ⁺
R	any unicovalent organic group such as methyl
TCNE	tetracyanoethene
Tf	trifluoromethanesulfonyl group, F ₃ CSO ₂ -
THF	tetrahydrofuran
TMEDA	tetramethylethylenediamine, $Me_2NCH_2CH_2NMe_2$
х	any halogen

108

1. INTRODUCTION

In this Annual Review, I attempt to cover the organoiron chemistry reported in journals published during calendar year 1989. Organoiron compounds are those compounds which contain at least one C-Fe bond; however, Fe-CN compounds are not included in this review, and properties and reactions of the simple iron carbonyls are not described exhaustively. Ferrocenes are treated in Annual Surveys by B. W. Rockett and G. Marr.

The material is organized more-or-less by the Gmelin system, first by increasing number of conjoined iron atoms, then by increasing hapticity of principal organic ligand. The latter is determined by the principle of last position. Thus, $(\eta^3$ allyl) $(\eta^5$ -cyclopentadienyl) $(\eta^2$ -ethene)iron would be treated with cyclopentadienyliron compounds rather than with allyl- or alkeneiron species. However, for purpose of conciseness, many reactions of dimers such as dicyclopentadienyltetracarbonyldiiron [Fp₂, Cp₂Fe₂(CO)₄], in which they undergo fission into monoiron products, are treated alongside those of their monomeric derivatives such as FpR. Likewise, FeM_n clusters are treated as a group with other metal clusters of the same nuclearity.

In structural drawings, solid lines between nuclei represent electron-pair bonds unless otherwise stated. In cases where the electron pair is considered to originate from one atom, an arrowhead is used in the traditional way to show direction of electron pair donation and consequent formal charges. Otherwise, formal charges are shown explicitly.

This reviewer finds adherence to these conventions to be possible in describing all but the largest clusters and multipledecker molecules, and I believe that their use provides clarity sometimes lost when lines are used willy-nilly in the same structural drawing to represent electron-pair bonds, partial bonds, and geometrical proximity of unbonded atoms. To minimize clutter in structural drawings (particularly in cluster structures), I am also continuing to use the symbol Ft for the commonly-occurring tricarbonvliron group.

2. REFERENCE WORKS

Two volumes of the ongoing Gmelin organiron series have appeared during 1989. Volume $Bl4^1$ covers Fp-R compounds with R a carbocyclic or heterocyclic ring, the Fp[•] free radical, and salts of Fp⁻, Fp⁺, and Fp-L⁺. Volume $Bl5^2$ covers salts of FpCO⁺, (dienyl)Fe(CO)₃⁺, and their thiocarbonyl and isonitrile derivatives.

3. REACTIONS OF "NAKED" IRON ATOMS AND IONS

Gas phase reactions of Fe⁺ with a variety of organic and inorganic substrates have continued to receive intensive study. The energetics and mechanism of reaction of Fe⁺ with 1-pentene have been studied by means of the energy spectrum of the products and collision-induced dissociation studies of plausible intermediates. The ferracyclobutane intermediate, $cyclo-FeC_3H_6^+$, was implicated, and its heat of formation estimated at about 1120 kJ/mol³. Reactions of Fe⁺ with allenes have been investigated, with emphasis on labelling studies to probe rearrangements, which are prevalent in the Fe(allene)⁺ systems as compared with the isomeric Fe(alkyne)⁺ systems⁴.

Two groups have studied reactions of halobenzenes PhX with Fe⁺. Iodobenzene reacted to form $Ph_{1,2}Fe^{+5}$, but dehydrohalogenation predominated with X = F, Cl, and Br, which formed $Fe(C_6H_4)_n^+$, $n = 1-7^{5,6}$. $Fe(C_6H_4)^+$ reacted with alkanes to give products explicable on the basis of iron insertion into C-C or C-H bonds, followed by migration of alkyl groups or hydrogen onto the benzyne ligand, or by insertion of the benzyne into Fe-C or Fe-H bonds⁶. The bond dissociation energy D^O for Fe⁺-(C₆H₄) was determined to be 320 ± 40^6 and 350 ± 10^{-5} kJ/mol by the two groups.

Reactions of the anion Fe⁻ with organosulfur compounds were dominated by insertion into C-S bonds. With thiols, $\text{FeSH}_{0-2}^$ were produced⁷. Fe⁺ reacted with ethylene sulfide to generate the sequence of ions FeS_n^+ [n = 1-6]⁸.

Several studies from Berlin have dealt with the mechanistic details of the reaction of Fe⁺ with nitriles, as studied by extensive isotopic labelling. In general the reactions were found to proceed by end-on coordination of the Fe⁺ to the nitrile group. Depending on structure and chain length, this is followed by insertion of Fe⁺ into a topologically remote C-H bond or into the C-CN bond. The latter process dominates for t-butyl cyanide and isocyanide, and is followed by hydrogen transfer to form $(C_{A}H_{B})$ Fe(HCN)^{+ 9}. With longer chain molecules R₂CHCN, both processes compete, and one chain experiences alkene loss while the other gives hydrogen $loss^{10-12}$. Isotope effects suggested that alkene loss, not oxidative addition to the C-H bond, was the rate-determining step¹¹. Unsaturated nitriles have also been studied, with the conclusion that dicoordinate species may form when the double bond is sufficiently remote from the nitrile group; insertion into the distal allylic C-C bond then led to loss of alkene¹³. The phosphorus analogs of nitriles, $RC \equiv P$, did not behave similarly to nitriles in reactions with Fe⁺; processes

which eventuated in loss of methane and ethene dominated 1^{4} .

The processes which result in loss of hydrogen and ethene when Fe^+ reacts with 1-alkanols in the gas phase have been studied further by isotope labelling and reinterpreted in terms of remote functionalization analogous to that characterized for nitriles^{15,16}. As the result of such a process, the Fe⁺-induced loss of ethene from 1-aminopropane was found specifically to involve the 1- and 2-methylenes¹⁶. Reinterpretations of previous findings on primary alcohols and amines in terms of the remote functionalization mechanism have been offered and supported by extensive isotopic labelling¹⁷.

Reaction of various Fe⁺-L species with ammonia resulted in formation of Fe=NH₂⁺, for which a strong Fe-N bond strength was indicated¹⁸. The proton affinity of Fe=CH₂ was about 930 kJ/mol, from which a D^O(Fe-CH₂) of 360 ±30 kJ/mol was calculated. This may be compared with the D^O(Fe⁺-CH₂) of 343 ± 21¹⁹ or an independently determined value of 347 ± 17²⁰. For the first-row transition metals from Sc to Cu, the M⁺=CH₂ bond strengths were found to correlate with promotion energies to an s¹dⁿ⁻¹ state suitable for formation of the double bond²⁰.

Although reaction of naked Fe⁺ with allyl chloride led principally to the allyl cation, reactions of Fe(CO)_n⁺ resulted in coupling reactions analogous to ones which occur in solution, forming $C_{6}H_{10}^{+}$ and FeCl₂. With Fe(CO)₂⁺, the major product was ($C_{3}H_{5}$)FeCl⁺; with Fe(CO)₄⁺, ($C_{6}H_{10}$)FeCl₂⁺, which gave hexadiene radical-cation on collisional activation²¹.

The bimetallic ion ScFe⁺ was unreactive toward alkanes, but reacted with alkenes with scission of C-H bonds. Collisional deactivation of various ScFeL⁺ species generally resulted in cleavage of the weak Sc-Fe bond, with loss of FeH_{0-2}^{22} . NbFe⁺ resulted from collisional loss of CO ligands from NbFe(CO)_{2,3}⁺, formed from Nb⁺ and Fe(CO)₅. NbFe⁺ reacted most efficiently with alkenes having allylic C-H bonds. Extensive reactions of NbFeL⁺ [L = O, CO, H₂O, alkenes] were studied and compared²³.

Two groups have studied the reactions of Fe atoms with cyclopentadiene in condensed phases. ESR spectra of Fe^{3+} complexes in various spin states were reported, but not the nature of the redox processes which might have led to $Fe^{3+} 2^4$. Cocondensation of iron atoms with cyclopentadiene and various alkynes at 77 K led to substituted ferrocenes; for example, 1,2,3,4-tetramethylferrocene resulted when 2-butyne was used. A mechanism involving CpFe=CH (Eq. 1) was proposed²⁵.

4. COMPOUNDS WITH η^1 -CARBON LIGANDS

a. Hydrido-, Alkyl-, and Aryl-Iron Compounds

In this section I discuss not only organometallic compounds having only iron-carbon sigma bonds, but also a number of lowcoordinate or low-valent species which, in the absence of such bonds, are not organometallics, according to strict definition. They are included here because of their utility in synthesis of organometallics and because of their intrinsic interest to many organometallic chemists.

Among these are dihydrogen complexes. Several examples of $L_4Fe(H_2)H^+$ have been reported on during 1989. Reduction of (DEPE) FeCl₂ with NaBH₄ in the presence of dihydrogen and base effectively produced trans-(DEPE)₂Fe(H_2)H⁺; a mechanism involving deprotonation of η^2 -dihydrogen intermediates was proposed²⁶. Protonation of L_4FeH_2 [L = (EtO)₃P, (EtO)₂PPh] with HBF₄ at -80^O produced $L_{A}Fe(H_{2})H^{+}$, from which the H₂ ligand was readily displaced. Reaction with aryldiazonium salts led to formation of L_3 Fe(N=NAr)₂²⁺ and L_4 Fe(ArN=NH)(N=CMe)^{2+ 27}. X-Ray and neutron diffraction studies of $(DPPE)_{2}Fe(H_{2})H^{+}Ph_{4}B^{-}$ indicated a H-H distance of 0.87(3) Å [X-ray] or 0.816(16) Å [neutron]. These studies also showed the hydride ligand to be closer to the metal [1.535(12) Å] than the dihydrogen [1.616(10) Å], and serve to calibrate the NMR T_1 method²⁸. A number of new hydride ligand T_1 values shorter than 125 ms have been measured; for example $L_4Fe(H_2)H^+$ [L = PhP(OEt)₂] showed T₁'s of 60 ms for the hydride and 4 ms for the dihydrogen ligand²⁹. $[P(CH_2CH_2PPh_2)_3FeH[X_2]^+$ BPh_{A} [X = H, N] in THF served as a selective hydrogenation catalyst for reducing terminal alkynes to alkenes³⁰.

Further examples of two-coordinate iron compounds, which owe their stability to the bulkiness of the ligands, have been reported: $Fe[N(SiMe_2Ph)_2]_2$ and $Fe[N(SiMePh_2)_2]_2$. Both have linear structures and high-spin configurations³¹. A compound described as $Fe(NPh_2)_2$ formed ferrocene on reaction with two equivalents of cyclopentadienyllithium. With four equivalents of PhC=CLi, a compound, characterized as Li^+_2 (Ph_2N)₂Fe(C==CPh)₂²⁻ by elemental

analysis and magnetic moment determination, was formed. With Li(CH₂)₄Li, a product similarly characterized as Li_{3}^{+} [ICH₂)₄)₂- FeNPh_{2}^{3-} resulted³². The product from reaction of phenyllithium and Fells at -789 iFngFe ?) underwent coupling with Messichlici to form, after protonolysis, PhCH₂SiMe₃ and biphenyl³³.

Reduction of (1,4-diazadiene)FeCl₂ with Grignard reagents gave a species {(diazadiene)Fe(0) ?} capable of catalyzing Diels-Alder additions of internal alkynes to norbornadiene³⁴. The crystal structure of $(RN=CH-CH=NR)Fe(NO)_2$ [R = CMe₃] has been reported, as a representative of several (diazadiene) irondinitrosyls which were synthesized. Spectroscopic and electrochemical properties were reported³⁵. Crystal structures of (DPPE)Fe(NO)₂ and $(\mu-DPPE)[Fe(NO)_2Cl]_2$ have also been reported³⁶. Phosphine adducts $(R_3P)_{1-3}FeCl_3$ have been studied by ESR and crystallographic means. Unstable monophosphine adducts [R = Ph, cyclohexyl]were found to be high-spin tetrahedral compounds. Diphosphine adducts were isolable and more fully characterized. The bis(PPh3) adduct had long (2.64 Å) axial Fe-P bonds in a trigonal bipyramidal structure and was a high-spin compound, whereas the bis(trimethylphosphine) analog had more normal Fe-P bond lengths (2.335 Å) and a S = 3/2 ground state³⁷.

Electrochemically generated Fe[0] porphyrins were found to react readily with alkyl halides to form RFe(Por) -, which were isolable with sufficient steric hindrance around the alkyl group. Electrochemistry gave access to formal oxidation states of iron between I and IV, and their relative stabilities were discussed as a function of the algol group and the popphyrin $ring^{3R}$. Reaction of (Por)FeR with dioxygen has been studied by NMR methods at low temperatures, allowing characterization of the following reaction scheme:

 $(Por)FeCHR_2 + O_2 \longrightarrow (Por)FeOOCHR_2$ $(Por)FeOOCHR_{2} \xrightarrow{r} (Por)FeOH + R_{2}C=0$ $2 (Por)FeOH \longrightarrow (Por)FeOFe(Por) + H_{2}O$ (2)

The first step was photochemically assisted, but was retarded by am axial N-methylimidazole ligand. (Por)FeUH catalyzed the formation of acetaldehyde from ethyl hydroperoxide³⁹.

Evidence for formation of an organoiron intermediate in biosynthesis of leukotriene A, has been adduced by study of lipokygenase enzymes from different species, which produce different stereochemistry, and by studying the effect of oxygen pressure on the products⁴⁰. The possible role of organoiron intermediates in cytochrome-catalyzed epoxidation reactions, as modeled by use of characterizable porphyrin systems, remains a topic of controversy. The successful epoxidation of adamantylideneadamantane catalyzed by (Por)FeCl (Por in this case is tetraphenylporphyrinl has been held by Traylor⁴¹ to argue against oxaferracycle intermediates. The σ -alkyl porphyrin (Por)FeCH₂CH(OH)CH₂CMe₃ has been synthesized by reduction of (Por)FeCl [here Por signifies tetrakis(2,6-dichlorophenyl)porphyrin] in the presence of the bromohydrin or by reduction of the N-alkylated porphyrin with dithionite. Deprotonation of the hydroxyl group resulted in formation of the epoxide, Me₃CCH₂CHCH₂O, in 80% yield. This result provides a model for cytochrome epoxidation reactions involving organoiron intermediates⁴², though it does not prove their necessity in the actual biological reactions. Molecular modeling studies of reaction of the efficient catalyst [tetrakis-(2,6-dibromophenyl)porphinato]iron(III) chloride did not support the formation of oxaferracyclic intermediates⁴³.

The mechanisms involved in selective oxidation of alkanes using the Gif and Gif-Orsay systems have been discussed, and the role of organoiron intermediates supported. Using the Gif system, involving $(C_{5}H_{5}N)_{4}FeCl_{2}$, acetic acid, zinc dust, and oxygen, the following symbolic mechanism was proposed⁴⁴:

$$FeX_{2} + HO_{2}^{\circ} + HX \longrightarrow X_{3}Fe=0 + H_{2}^{\circ} 0 \xrightarrow{-HX} X_{2}Fe=0$$

$$\xrightarrow{CH_{2}R_{2}} (HO)_{2}X_{2}FeCHR_{2} \xrightarrow{-HX} 0 \xrightarrow{OH} + 2 HX \xrightarrow{+2} HX \xrightarrow{-2} HO_{2}^{\circ} X_{3}Fe=CR_{2} \xrightarrow{HO_{2}^{\circ}} X_$$

ÒН

4b. Iron Monocarbonyls, e.g. L₄Fe(CO)

The majority of the compounds in this class are iron porphyrin derivatives (Por)Fe(CO), which continue to be studied as models for biological heme systems. A topic of current interest is the basis for discrimination between O_2 and CO as axial ligands. Two independent molecular mechanics studies of several monocapped porphyrin models have suggested that steric considerations play an important role in favoring coordination of O_2 (bent) rather than CO (linear)^{45,46}. The crystal structure of a sterically encumbered (Por)Fe(CO) molecule, 1, did show a slight distortion (172.5^o) of the Fe-C-O angle from linearity⁴⁷. The significant influence of distortions in the porphyrin ring, induced by shortening the cross-ring strap, upon O_2 or CO dissociation was investigated by resonance Raman spectroscopy⁴⁸. A new class of porphyrins having a strap across one face and two large pendant groups on the other, called "jellyfish" porphyrins, has

been synthesized, and their affinities for O_2 and CO measured⁴⁹. Examples are shown as 2. Measurements of proton NMR spectra of both O_2 and CO adducts of the "jellyfish" porphyrin having pendant pivalamide groups suggested significant conformational differences in the two adducts⁴⁹.

Time-resolved infrared linear dichroism has been applied to study of the CO orientation in carbonylated cytochrome oxidase. The results indicated a Fe-C-O angle of 175° and a 16° deviation of the Fe-C bond from perpendicularity with the mean heme plane⁵⁰. ¹⁷O NMR studies of carbonylated heme proteins [sperm whale myoglobin and human and rabbit hemoglobins] showed "surprisingly narrow" lines. Comparison results revealed linear relationships between the chemical shift, the infrared stretching frequency of the CO ligand, and the CO binding affinity of the protein⁵¹. Reversible CO binding to iron(III) isobacteriochlorins has been studied by ESR spectroscopy, as has binding of Me₃CNC and PF₃⁵².

Thermal decarbonylation of $[SC_6H_4SCH_2SC_6H_4S]Fe(CO)_2$ at 90⁰ in DMF gave the dimeric monocarbonyl product 3, whose structure was ascertained by X-ray crystallography. Only 3 and its enantiomer, of the ten possible stereoisomers, were observed⁵³.

Photolysis of $(ON)_2 Fe(CO)_2$ in hydrogen-doped liquid rare gas solvents produced $(ON)_2 Fe(CO)(\eta^2 - H_2)^{54}$. An arsine complex, $R_3As - Fe(CO)(NO)_2$ [R = CMe₃], along with analogous compounds having sily1, germy1, and stannyl substituents on the arsenic in lieu of the <u>tert</u>-butyl groups, were prepared by carbonyl displacement reactions⁵⁵.

4c. Iron Dicarbonyls, e.g. L₃Fe(CO)₂

 $Fe(CO)_2^-$ reacted in the gas phase with methane and neopentane by C-H bond insertion to form (OC)_2Fe(R)H⁻. With dimethyl ether, an adduct Me₂OPe(CO)₂⁻ and a dehydrogenated adduct, thought to be (OC)_2Fe=CHOMe⁻ based on deuterium exchange experiments, formed^{55a}.

The low-energy electron transmission spectrum of $Fe(CO)_2^{-}$ (NO)₂ has been analyzed through use of multiple scattering X α calculations, which indicated four stable anion states⁵⁶.

116

 $Fe(CO)_2(NO)_2$ catalyzed the alkylation of allylic carbonates by sodium diethylmalonate more effectively than salts of $Fe(CO)_3 \sim (NO)^{-57}$.

Several complexes (RS)₂Fe(DPPE)(CO)₂ were synthesized directly from Fe(II) salts by reaction with DPPE and the thiolate under CO. The crystal structure of the bis(benzenethiolate) complex showed the all-<u>cis</u> configuration⁵⁸. The electrochemistry of [MeC(S)CHC(S)Mel₂Fe(CO)₂ has been explored; one-electron reduction was followed by rapid loss of both CO's, whereas oxidation resulted in formation of the 3,5-dimethyl-1,2-dithiolium caticn (from the dithioacetylacetonate ligand) and (n_1^5 ?) [Me-C(S)CHC(S)MelFe(CO)₂⁺ 59.

Reaction of μ -N₂[FeL₂(CO)₂]₂ with propionitrile gave the Ncoordinated EtCN→FeL₂(CO)₂ [L = P(OMe)₃, PEt₃], but diphenylketene and its p-tolylimine gave η^2 -coordinated products 4 [Y = CPh₂; X = O, NAr], for which crystal structures were reported. Reactions of compounds 4 [X = Y = S] with alkynes to form isomeric products, 5 and 6, which can equilibrate in solution, have

been studied by extended Hückel MO methods⁶¹. Halopropynal acetals, $XC \equiv CCH(OR)_2$ [X = Cl, Br, I; R = Me, Et] reacted with the μ -N₂ complex to form (OC)₂L₂Fe(X) [C \equiv CCH(OR)₂], but HC \equiv CCH(OR)₂ gave the carbenoid products 7, (OC)₂L₂Fe=C=CH-CHO. With the chloroalkyne ClC \equiv CCH(OCH₂CH₂CH₂C), dehydrohalogenation and ligand coupling produced a small amount of 8⁶².

Reaction of DPPE with HFe(CO)₄SiPh₃ gave the bis-hydride $H_2Fe(CO)_2(DPPE)$, also obtainable by photodecarbonylation of $(DPPE)Fe(CO)_3$ in the presence of hydrogen. This product is probably the same as the product previously reported to be $(DPPE)Fe(CO)_2(H)(SiPh_3)^{63}$. An authentic sample of the latter could be prepared by silane exchange. A number of silyl complexes $(OC)_2Fe[P(OEt)_3)_2(H)(SiPh_3)$ have been prepared by photoly-

sis of the tricarbonyl (OC)₃Fe[P(OEt)₃]₂ in the presence of the silane [R = OEt, Ph, R₃ = Ph₂Me]. Triphenylphosphite analogs were better prepared by thermal reaction of the ortho-metallated complex (OC)₂Fe[P(OPh)₃]₂. The compounds showed fluxionality at room temperature, and they were deprotonated by KH to form anio-nic silyl complexes, which gave covalent metallo derivatives MFe(CO)₂L₂SiR₃ [M = Ph₃PAu, Me₃Sn, and Me₂ClSn]⁶⁴.

4d. Iron Tricarbonyls, e.g. L₂Fe(CO)₃

Photolysis of LFe(CO)₄ and oxidative addition of the resulting LFe(CO)₃ to an Si-H bond have been used to prepare silyl complexes <u>mer</u>-(OC)₃FeL(SiR₃)(H) [L = P(OMe)₃, P(OPh)₃; R = OEt, Ph)⁶⁴. The anion, Ph₃PFe(CO)₃SiR₃⁻ reacted with Group 12 halides to form stable -CdCl and -HgBr adducts, but the -ZnCl adduct was unstable. Hg[Fe(CO)₃(PPh₃)(SiR₃)]₂ could also be formed by further reaction⁶⁵. The geometry of the silyl hydride complexes has been found to depend on solvent; in nucleophilic solvents, the triphenylsilyl ligand is coplanar with the meridional CO's, in non-nucleophilic solvents the hydride lies in that plane. The hydride and silyl ligands were mutually <u>cis</u> in each case. Reaction of (Ph₃P)Fe(CO)₃(H)(SiPh₃) with R₃P or R₃N resulted in deprotonation of the relatively acidic (pK_a < 9) hydride⁶⁶. The highly reduced dianions, Fe(CO)₃PR₃²⁻ [R = Ph, Me], were

The highly reduced dianions, $Fe(CO)_3PR_3^{2-}$ [R = Ph, Me], were produced by treatment of the tetracarbonyls with tetraethylammonium hydroxide in methanol to form $HFe(CO)_3PR_3^-$, followed by deprotonation with $K(\underline{sec}-Bu)_3BH$. They are very strong bases, which readily deprotonated acetonitrile. The triphenylphosphine ligand readily exchanged with trimethyl phosphite at room temperature⁶⁷. The acyliron complexes Na⁺ [RC(=0)Fe(CO)_3PPh_3]⁻, obtained by reaction of alkyl halides with Na₂Fe(CO)₄ and PPh₃, reacted readily with aryl iodides in the presence of catalytic Pd(PPh_3)₄ and ZnCl₂ to form aryl ketones RCOAr. (\underline{S})-2-bromooctane gave the (\underline{R})-ketone in high enantiomeric purity⁶⁸.

Synthesis of tricarbonylbis(phosphine)iron compounds by photolysis of $Fe(CO)_5$ in the presence of two equivalents of phosphine has been described in detail⁶⁹. $(Ph_3P)_2Fe(CO)_3$ can be obtained free of mono- or tri-phosphine compounds by reaction of triphenylphosphine with KHFe(CO)₄ in ethanol⁷⁰. (DPPM)Fe(CO)₃, (DPPE)Fe(CO)₃ and other diphosphine-Fe(CO)₃ complexes were prepared by reduction of FeCl₂ by manganese[0] in the presence of the diphosphine and carbon monoxide⁷¹. What appears to be the same reaction could also be achieved by acetone-sensitized photoreduction of FeCl₂ in THF also containing triethylamine⁷².

The crystal structure of $[\underline{o}-C_6H_4(PPh_2)_2]Fe(CO)_3$ has been

118

reported, along with nitrosylation studies of this and other (diphosphine)Fe(CO)₃ complexes⁷³. The Fe(CO)₃ complex of 1,1'bis(dipacay)pacsphing)terroreade, which resulted from Me₃WO-haduced decarbonylation of the Fe(CO)₄ complex, was also the subject of X-ray crystallographic study⁷⁴. Mössbauer spectra of trans- $L^{1}L^{2}Fe(CO)_{3}$ compounds $\{L^{1} \text{ and } L^{2} = \text{phosphines and phos$ $phites}$ have been measured and interpreted in terms of Fe \rightarrow P back donation⁷⁵.

A mechanistic study of the photosubstitution reactions of $[R-N=\dot{C}-\dot{C}=N-R]Fe(CO)_3$ has indicated the presence of two excited states of similar energies. Population of the lowest triplet ligand-field Brate led to CD bibBochation, whereas population of the slightly lower energy metal-ligand state resulted in formation of the η^4 isomer⁷⁶. Similar behavior was also observed for ruthenium analogs and for phosphite-substituted complexes $[R-N=\dot{C}-\dot{C}=N-R]Fe(CO)_2[P(OPh)_3]$; in the latter cases the ligand-field state reacted by photodissociaiton of an Fe-N bond, with rapid reclosure⁷⁷. Thermal reaction of a diazabutadiene complex with dimethyl azodicarboxylate occurred as shown in Eq. 3⁷⁸.

Reaction of tetramethylene-1,2,3-selenadiazole with $Fe_2(CO)_9$ in ethanol produced the dimeric product 10 (X-ray structure)⁷⁹. Bridged complexes 11 resulted when methanolic solutions of Fe^{2+} and arenethiolates were allowed to absorb CO^{58} .

4e. Iron Tetracarbonyls, e.g. $LFe(CO)_4$ and $R_2Fe(CO)_4$

The homolytic bond dissociation energy of H-Fe(CO)₄H has been indirectly measured as 250 kJ/mol, using data on pK_a and oxidation potentials in acetonitrile⁸⁰. Na₂Fe(CO)₄ reacted with COS to form Fe(CO)₅ and sodium dithiocarbonate, Na₂COS₂²⁻, but carbon disulfide did not form Fe(CO)₄(CS). Isothiocyanates RNCS gave isonitrile complexes Fe(CO)₄(CNR) [R = Ph, Me]⁸¹. Na₂Fe(CO)₄ displaced chloride from (η^6 -PhCl)Cr(CO)₃ in THF/Nmethylpyrolidinone solution, forming the complexed aryl iron species $[\eta^6-c_6H_5Cr(CO)_3]-Fe(CO)_4^{-82}$.

Metathetical reaction of Et_4N^+ HFe(CO)₄⁻ with MCl₂ [M = Zn, Cd, Hg] gave M[HFe(CO)₄]₂, from which butyl-lithium was able to abstract two protons. A crystal structure of (PPN⁺)₂ Hg[Fe(CO)₄]₂²⁻ showed a linear Fe-Hg-Fe skeleton with idealized D_{3h} symmetry⁸³. An ionic compound, (Ph₃P)₂Rh[R-N=CH-CH=N-R]⁺ HFe(CO)₄⁻, 12, [R = cyclohexyl] was formed (along with covalent Rh-Fe species to be discussed in Section 9c of this review) from interaction of (Ph₃P)₂RhH₂[RN=CH-CH=NR]⁺ and HFe(CO)₄^{- 84}.

Phase-transfer reactions involving $Fe(CO)_5$ and base have often been supposed to involve either $HFe(CO)_4^-$ or $Fe(CO)_4^{2-}$ as reactive intermediates. Evidence has been presented supporting the latter alternative in a phase-transfer system involving 1 M $NaOH/CH_2X_2/Bu_4N^+$ HSO₄⁻: use of preformed $HFe(CO)_4^-$ instead of $Fe(CO)_5$ gave no reaction, whereas $Na_2Fe(CO)_4$ gave reactions identical to those of $Fe(CO)_5$. The reactions observed were formation of $(OC)_4^-FeCH_2PPh_3^+$ in the presence of triphenylphosphine and of $\mu^ CH_2Fe_2(CO)_8$ in its absence. Reactive alkyl chlorides under 10 atm. CO produced acyl anions $RC(=O)Fe(CO)_4^-$ [R = benzyl, cinnamyl, cyanomethyl, etc.]⁸⁵. Treatment of $ArCHBr_2$ with $Fe(CO)_5$, KOH, and 18-crown-6 in benzene gave (mostly trans) stilbenes ArCH=CHAr in high yields⁸⁶. Use of a $Fe(CO)_5-Co_2(CO)_8$ mixture under phase transfer conditions resulted in catalytic conversion of iodobenzene to benzoic acid⁸⁷.

The hydride binding energy of $Fe(CO)_5$ in the gas phase (forming $HC(=O)Fe(CO)_4^{-}$) was measured as 230(20) kJ/mol, considerably stronger than those of the Group 6 metal carbonyls; from the available energetics, CO insertion into the H-Fe(CO)_4^{-} bond was concluded to be thermodynamically unfavorable⁸⁸. MINDO calculations for hydride migration from iron to CO in HFe(CO)_4^{-} indicated a barrier of 184 kJ/mol, lower than the barrier for direct hydrogenation of CO⁸⁹. Fe(CO)_4COOH⁻, from reaction of OH⁻ with Fe(CO)₅, has been characterized by spectroscopic means⁹⁰.

Reaction of KHFe(CO)₄ with ethyl acrylate in ethanol formed the adduct $EtO_2CCH(Me)Fe(CO)_4$, which could be isolated as its PPN⁺ salt. Otherwise, it underwent protonation by solvent to form ethyl propanoate and Fe(CO)₄, which formed $(\eta^2 - CH_2 = CHCO_2Et) -$ Fe(CO)₄, 13. Because of partial cycling of the latter, the overall yield of ethyl propanoate was 270% with respect to iron. EtO₂CCH₂CH₂C(=O)CH₂CH₂CO₂Et also formed (40% yield)⁹¹. The stable anion EtO₂CC(=O)-Fe(CO)₄⁻, from reaction of Fe(CO)₄²⁻ with EtO₂CC(=O)Cl, underwent methylation at iron upon treatment with metdgd trifilate at -52° . The graduat decomposed at -32° to form. Me33332₂St and Re33Ka(33)₄332₂St. The latter decardonglated at $+5^{\circ}$, giving MeCO₂Et and Fe(CO)₅⁹². The crystal structure of (Me₂N)₃C⁺ Me₂NC(=O)-Fe(CO)₄⁻ showed the carbamoyl group in the axial position of the iron trigonal bipyramid⁹³.

The ferracycle 14 (crystal structure) has been isolated from the reaction mixture from carbonylation of $(\mu-CH_2)Fe_2(CO)_8$. An $(\eta^2-CH_2CO)Fe(CO)_4$ intermediate was suggested⁹⁴. $(F_3C)_2Fe(CO)_4$ has been prepared in 55% yield by reaction of $Cd(CF_3)_2(MeOCR_2-CH_2OMe)$ with $X_2Fe(CO)_4$. In acetonitrile the cadmium reagent served to fluorinate rather than trifluoromethylate⁹⁵.

A number of compounds having heavier members of Group 14 bonded to $Fe(CO)_4$ groups have been prepared and studied. The products of carbonyl displacement reactions of <u>cis</u>-RFe(CO)_4MPh_3 [M = Si, Ge] by phosphines and phosphites were previously described in Section 4d⁶⁶. The silyl and germyl tetracarbonyl hydrides were quite acidic, with pKa's below 6 in acetonitrile. Reaction of the triphenylsilyl compound with isoprene yielded (Ph_3Si)_2Fe(CO)_4⁶⁶. Reaction of bis(dimethylgermyl]methane and ethane with Fe(CO)₅ under ultraviolet irradiation gave rise to cyclic species 15. The four-membered ring compound decomposed on

prolonged irradiation to produce the five-membered ring and other products. Other reactions of these heterocycles, with phosphines, halides, oxygen, and sulfur, were also described⁹⁶. Reaction of $Fe(CO)_4(GeMeH_2)_2$ with cobalt carbonyl, to form a germyl-cobalt species, has been studied⁹⁷. <u>cis</u>-Fe(CO)_4(SnMe_3)_2 has been synthesized in high yield from N(SnMe_3)_3 and Fe(CO)_5; use of $Fe(CO)_4CS$ produced <u>fac</u>-Fe(CO)_3(CS)(SnMe_3)_2⁹⁸. The three-coordinate tin and lead complexes $(Et_4N^+)_2 M^+(Fe(CO)_4^{-1})_3$ have been prepared and the crystal structures determined; in both cases the expected trigonal planar structures were found, with average D-Fe dibtances of 2.55 % for tin and 2.52 for lead⁹⁹. The crystal structure of the planar four-membered ring metallacycle $[Et_2Pb-Fe(CO)_4]_2$ has also been reported, with average Pb-Fe distances of 2.73 Å¹⁰⁰. The shorter distances in the MFe₃ dianions appear to suggest significant double bond character.

The thallium-iron dianion $\text{Tl}_2\text{Fe}_4(\text{CO})_{16}^{2-}$, which probably exists as $\text{TlFe}_2(\text{CO})_8^-$ in solution, has been found to coordinate with diamines to form distorted tetrahedrally coordinated (diamine) $\text{Tl}[\text{Fe}(\text{CO})_4]_2^-$. Several examples have been prepared and characterized through spectroscopy and crystal structures¹⁰¹.

Reaction of the diazete with $Fe_2(CO)_9$ produced 16 and a triiron compound¹⁰². Synthesis of $[(Me_3C)_3P]Fe(CO)_4$ has been described in detail⁶⁹. A more complex phosphine-Fe(CO)_4 product, 17, (crystal structure) resulted from reaction of $HFe(CO)_4^-$ with $(R_2N)_2PPC1_2$ [R = isopropy1]. In 17 the purely coordinate-covalent P->Fe bond was 2.25 Å long, whereas the bond lengths in the PFe_2 grouping averaged 2.32 Å. Reaction of $HFe(CO)_4^-$ with $(PhPC1_2)W(CO)_5$ gave $(OC)_4Fe-PPhH-W(CO)_5^-$ 103.

The trianion ${\rm Sb[Fe(CO)}_4 l_4^{3-}$ was readily prepared by reaction of antimony chlorides with Collman's reagent or ${\rm Fe(CO)}_5/{\rm KOH}/{\rm MeOH}$. The trianion showed a tetrahedral structure in the crystal, with an average Sb-Fe bond length of 2.67 Å. Reaction with TiCl₃ or SbCl₃ gave ClSb[Fe(CO)_4]_3²⁻¹⁰⁴. The same dianion was also produced directly from HFe(CO)_4⁻ and SbCl₃¹⁰⁵ or from Fe₂(CO)_8²⁻ and SbCl₃¹⁰⁶. Use of BiCl₃ in these reactions similarly produced the bismuth analog^{105,106}. Methylation of the latter afforded 18¹⁰⁶.

A series of thiolate complexes, $RSFe(CO)_4$, [R = H, Me, Et, Ph] have been synthesized, in the case of R = Ph by reaction of $HFe(CO)_4$ with PhSSPh. The bond length between the axial PhS ligand and the iron in PPN⁺ PhSFe(CO)_4⁻ was a fairly long 2.33 Å. Although the formal charge in PhSFe(CO)_4⁻ resides on the iron, alkylation at low temperature occurred on sulfur, forming labile thioether complexes (PhSR) \rightarrow Fe(CO)_4. Displacement of the thioether by thiolates provided convenient access to other thiolate complexes¹⁰⁷. Protonation of MeSFe(CO)_4⁻ at low temperatures formed observable thiol complex (MeSH)Fe(CO)_4^{107,108}. When a more electron-rich iron was generated by phosphine substitution, then protonation occurred on the iron, forming for instance HFe(SPh)(CO)_3(PEt_3) or the selenium analog HFe(SeMe)(CO)_3(PEt_3). Protonation of MeSFe(CO)₃(PEt₃)⁻, however, gave $(\eta^2 - \text{MeS-H})$ Fe-(CO)₃(PEt₃). The site selectivities in these low-temperature protonations were consistent with atomic charges calculated by Fenske-Hall methods¹⁰⁸.

4f. Carbene Complexes R₂C=Fe(CO)₄

A number of carbene complexes, 6, 7, and 8, were mentioned on previous pages. The electrochemical properties of $\boldsymbol{6}$ [R = CO_2Me , L = various phosphines having methyl and phenyl substituents] have been investigated. Oxidation of 6 [R = CO_2Me ; L = PPh₃] in acetonitrile resulted in catalyzed decomposition to the carbene dimer, tetrakis(carbomethoxy)tetrathiafulvalene. This apparently involved dimerization of the one-electron oxidation products, followed by ligand elimination¹⁰⁹. Conjugate addition of butyl-lithium to vinyl sulfide, then addition of the carbanion to $Fe(CO)_{4}(PPh_{3})$ gave the acyl anion complex , which was ethylated with triethyloxonium fluoborate to form the carbene complex, Ph₂PFe(CO)₃=C(OEt)CH(SPh)Bu. The crystal structure of this compound showed axial phosphine and carbene ligands, and an unusually short Fe=C distance of 1.86 Å. Ph₃PFe(CO)₃=C(OEt)(<u>o</u>-C₆H₄NMe₂) was formed similarly from lithiated N,N-dimethylaniline¹¹⁰.

8 represents a rather exotic bis cumulated carbene complex. Simpler examples of cumulated carbene complexes are the μ -carbido dimers (phthalocyanine)Fe=C=Fe(phthalocyanine). Examples of these compounds and derivatives with additional axial ligands on the irons have been studied by a battery of spectroscopic and magnetic methods, whose results are consistent with their formulation as containing Fe(IV)¹¹¹.

The zwitterionic complex $(Me_2N)_3P^+-OSiMe_2-Fe(CO)_4^-$, described as a HMPA-solvated silylene complex, has been implicated as an intermediate in reduction of Me_2SiCl_2 to polysilanes by $Fe(CO)_4^{2-}$ in HMPA¹¹².

4g. Some Reactions and Properties of Fe(CO)5

The optical spectra of Fe(CO)₅ and other metal carbonyls were examined with a fast-scan spectrometer, and compared with results of INDO/S calculations including configuration interaction. Near UV absorptions were attributed solely to metal-toligand charge transfer¹¹³. SF₆-Sensitized infrared photodecomposition of Fe(CO)₅ proceeded via sequential decarbonylation; in the presence of PF₃, unsaturated iron intermediates were trapped to form (OC)_nFe(PF₃)_{5-n}. Without trapping agent, the ultimate product was austenite iron with a mean particle size of 80 Å¹¹⁴. The kinetics and mechanism of trimethylamine oxide-induced substitution of triphenylphosphine for CO in $Fe(CO)_5$ have been studied. The reaction was first-order each in iron pentacarbonyl and trimethylamine oxide and zero-order in phosphine, consistent with rate-determining attack of the oxide on a carbonyl group¹¹⁵. Photochemical reaction of $Fe(CO)_5$ with nitrosoarenes produced azoxyarenes in high yields, along with small amounts of azo-arenes; nitrene complexes $ArN=Fe(CO)_4$ may be involved as intermediates¹¹⁶.

Reaction of $Fe(CO)_5$ with excess 3,5-di-t-butyl-1,2-benzoqui $none produced <math>Fe(O_2C_6H_2R_2)_3$, whereas salts of $Fe_4(O_2C_6H_2R_2)_4^{2+}$ resulted with excess iron carbonyl. Both contained high-spin $Fe(III)^{117}$. Co-thermolysis of 2-trimethylsilylnorbornadiene and iron pentacarbonyl produced three isomeric dimeric ketones $[C_7H_7(SiMe_3)]_2C=0$, all with the trimethylsilyl groups on the remanent double bonds¹¹⁸. [2 + 2]-Cyclobutane dimers resulted when 7,7-ethanomerbornadiene was allowed to react with $Fe(COS_5)$ in the presence of activating ligands such as phosphines, and triethylaluminum as reducing agent¹¹⁹.

An IR investigation of Fe(CO)₅ bonded to surfaces of alumina and zeolites has indicated coordination of a carbonyl oxygen to Lewis acid sites¹²⁰.

Homoleptic Fe(CNCF₃)₅ has been prepared by exhaustive ligand substitution from bis(η^4 -butadiene)carbonyliron. NMR spectra revealed rapid fluxional processes even at -100^o 121. Reaction of [BrC(CHO)₂]₂Fe or [BrC(CHO)₂]₃Fe⁻ [the ligand is the conjugate base of bromomalonaldenyde) with 4-tolyl isocyanate produced BrFe(CNAr)₅⁻¹²².

5. η^2 -ALKENE AND η^3 -ALLYL COMPLEXES

A new semiempirical SCF MO procedure for calculation of energies and geometries of organotransition metal compounds, called CNDO-S², has been developed. For the formation of $(\eta^2 - C_2H_4)Fe(CO)_4$ from ethene and $Fe(CO)_4$, the calculated energy was in reasonable agreement with experiment, but the calculated C-C bond length in the complex was 1.40, as compared to experimental 1.46 Å¹²³. EHMO calculations have also been applied to the mechanism of the substitution reaction of iron pentacarbonyl by ethene; the results favored a dissociative mechanism, with the ethene attacking a square planar $Fe(CO)_4$ fragment to form the product¹²⁴. $Fe(CO)_4(B_2H_5)^-$, which is isoelectronic with $Fe(CO)_4^-$ (C_2H_4), has been formed by reaction of $Fe(CO)_4^{2-}$ and THF-BH₃ or Me_2O -BH₃; a diborane-like structure, **19**, was indicated by NMR and Mössbauer spectra¹²⁵. Formation of (OC) $_{4}$ Fe(CH₂=CHCO₂Et), 13, during reduction of ethyl acrylate by HFe(CO) $_{4}^{-91}$ was previously noted in Section 4e. Reactions of organolithium or Grignard reagents with (OC) $_{4}$ Fe(η^{2} -CH₂=CHCONR₂) occurred with acyl transfer from the iron to the organic ligand, to form \mathcal{T} -ketoamides, R'C(=0)CH₂CH₂CONR₂, in 52-82% yields¹²⁶. Unusual zwitterionic η^{2} complexes 20 (crystal structure for Ar = phenyl) resulted when (η^{4} -PhCH=CH-CH=N-C₆Me₂H₃)Fe(CO)₃ was allowed to react with an aryl-lithium, then alkylated with triethyloxonium fluoborate¹²⁷.

Some examples of η^2 -ketene complexes, 4 [X = 0, Y = CAr₂]⁶⁰, were previously cited, as was the role of $(\eta^2$ -CH₂C=O)Fe(CO)₄ in formation of 14⁹⁴. A dimeric η^2 -complex of a thicketene, 21 [R = CF₃], resulted from photolysis of iron pentacarbonyl and (F₃C)₂C=C=S¹²⁸.

The quantum yields for sequential substitution of <u>trans</u>-cyclooctene for CO's in Fe(CO)₅ have been measured. The first substitution occurs with high (0.77-0.80) quantum yields at both 302 and 254 nm wavelengths; the second shows a lower quantum yield (0.59) at the longer wavelength, a consequence of partial cyclooctene photodissociation. The novel tris(alkene) complex $(\eta^2-\underline{\mathrm{trans}}-\mathrm{C_8H_{14}})_3\mathrm{Fe(CO)_2}$ was synthesized by irradiation of the bis(alkene) complex in the presence of excess alkene¹²⁹.

The product 9 in equation 3 has an η^2 -alkene ligand also coordinated to iron through a remote nitrogen atom, generating an overall η^3 attachment. The chemistry of analogous Fe(CO)₃ complexes of 7-azanorbornadienes has been described: when the Fe(CO)₃ group was coordinated to a double bond bearing two ester substituents, the complex was readily demetallated by trimethylamine oxide, but isomeric complexes with the iron coordinated to an unsubstituted double bond were comparatively resistant to

Me₃NO attack¹³⁰. Other examples of products with non-contiguous η^3 coordination, 22, resulted from complexation of ArC(=S)-N=C(E)-NMe₂ with diiron nonacarbonyl¹³¹.

 $(\eta^3$ -Allyl)iron tetracarbonyl fluoborate salts have been synthesized directly from allylic alcohols or dienes, Fe(CO)₅, and

HBF₄. The parent $(C_3H_5)Fe(CO)_4^+$ BF₄⁻ was obtained in 88% yield using ultraviolet irradiation. $(\eta^3 - PhCH^-CH^-CH_2Ph)Fe(CO)_3^+$ BF₄⁻ was obtained in 28% yield from 1,4-diphenylbuta-1,3diene¹³². The stereochemistry of the (allyl)iron tetracarbonyl cations from these reactions has been studied by spectroscopic means¹³³.

Neutral allylic complexes $(\eta^3-CH_2=CR=CH_2)Fe(CO)_3X$ [R = H, Me; X = Cl, Br] were obtained from the reaction of Me₂SiFe₂(CO)₈ with allyl halides¹³⁴. Attack of lithium halides on $(\eta^5$ -pentadienyl)tricarbonyliron cations resulted in partial decoordination to form $(\eta^3$ -pentadienyl)tricarbonyliron halides. In the case of the 1-phenylhexadienyl cation, attack was unspecific, and both η^3 complexes resulted¹³⁵. ⁵⁷Fe NMR studies of neutral and cationic (allyl)iron complexes showed chemical shifts in the range 780-1770 ppm¹³⁶.

Dienes RCH=CH-CR=CH₂ [R = H, Me] underwent 1,4-functionalization upon treatment with MeI, Fe(CO)₃(NO)⁻, and R'CE₂⁻, resulting in formation of MeC(=O)CHR-CH=CR-CH₂CR'E₂. A likely intermediate in this reaction was $(\eta^3-MeCOCHR-CH=CH=CH_2)$ Fe(CO)₂⁻ (NO)¹³⁷. Analogous allylic intermediates may be implicated in the alkylation of allylic carbonates by malonates in the presence of Fe(CO)₃(NO)^{- 57}.

Alkylation of $(\eta^3-C_3H_5)Fe(CO)_3^-$ by methyl iodide or benzyl bromide has been followed by low-temperature NMR. Alkylation at iron was followed by rapid alkyl migration to CO upon treatment with triphenyl phosphine, forming $(\eta^3-C_3H_5)Fe(CO)_2(PPh_3)(COR)$. These reacted further to form $(\eta^4-MeCH=CH-CR=O)Fe(CO)_2(PPh_3)$ products. In acetonitrile solution, the initial iron alkyls were diverted by solvent attack to form $CH_2=CH-CH_2COR^{138}$. Additional reactions which result in conversion of η^3 - to η^4 -iron compounds are shown in Eq. 4¹³⁹.

6. COMPOUNDS WITH η^4 -LIGANDS

6a. Trimethylenemethyl Complexes

The crystal structure of the [(CH₂)₃C]Fe(CO)₃-thiourea in-

126

0Ms

clusion compound, which, unlike the two components, was active in frequency doubling of 1.06 µm laser light, has been determined. The TMMFe(CO)₃ "guests" were found to be aligned head-to-tail along thiourea channels¹⁴⁰.

Reaction of (a-methoxyallenyl)lithium with iron pentacarbonyl at -78° , then with benzoyl chloride, produced the novel TMM complex 23. CH₂=C=CYLi [Y = SMe, NMe₂] reacted similarly¹⁴¹. Carbene complexes (OC $(OC)_{d}$ Fe=C(OEt)Ph and allenes H₂C=C=CH₂R [R = OH, CO2Et, or CH2OH] reacted by addition of 23 the allene to the Fe=C bond, forming TMM complexes (OC)₃Fe- $[C(CH_2)(CHCH_2R)(CPhOEt)]$, as a mixture of stereoisomers¹⁴². These complexes underwent acid-catalyzed rearrangement reactions under mild conditions to form dienes and/or diene complexes (Eq. 5)¹⁴³. Chiral (-)(OC)₃Fe[MeCHC(CH₂)₂] cleanly rearranged in five minutes in 85% sulfuric acid to $(+) - (CH_2 = CMe - CH = CH_2)Fe(CO)_3^{144}$.

6b. Complexes of Acyclic Dienes, including Heterodienes

Localized MO's for butadiene- and cyclobutadienetricarbonyliron have been presented, and the relationship between the LMO bonding patterns and the symmetry-based bonding description discussed¹⁴⁵.

A general route to (2-acylbutadiene)tricarbonyliron complexes via palladium-catalyzed reaction of acyl chlorides and (2trialkylstannylbutadiene) complexes has been described¹⁴⁶. Reaction of an $(\eta^3$ -pentadienyl)Fe(CO)₃X complex with methylmagnesium chloride under CO produced an acylated complex 135; a mechanism is suggested in Eq. 6. The same product resulted upon reduction of the starting material with sodium amalgam and reaction with acetyl chloride¹³⁵. Synthesis of a large number of dienetricarbonyliron complexes and their 1 H, 13 C and 57 Fe NMR spectra have

been reported. Wittig-Horner-type reactions and attack of carbon-nucleophiles at aldehyde, ketone, ester, and nitrile functional groups were used to build up complex organic diene ligands. The ⁵⁷Fe NMR spectra showed chemical shifts in the range 0-600 ppm¹³⁶. An X-ray structure of $[3-6-\eta(E)-6-methy]-3,5-heptadiene-$ 2-one)ltricarbonyliron showed a twisting of the terminal CMe₂group¹³⁶. Pseudorotation of the tricarbonyliron group in that $compound showed a <math>\Delta G^{\ddagger}$ of about 50 kJ/mol, as shown by variable temperature ¹³C NMR study¹⁴⁷.

The circular dichroism spectra of a range of functionalized dienetricarbonyliron complexes have been measured and used to determine the absolute configurations of chiral complexes¹⁴⁸. Reduction of $[CH_2=CH-C(CH_2OR)=CH_2]Fe(CO)_3$ [R = $(1_{5,4R}-camphanoy)]$ with Et_3SiH/BF_3 at -78° gave (isoprene)Fe(CO)_3 in 9% yield and 88% e.e. The principal product was the chiral (96% e.e.) TMM complex [MeCHC(CH_2)_2)Fe(CO)_3^{144}.

(Butadiene)tricarbonyliron captured thermal electrons in the gas phase, as shown by pulsed high-pressure mass spectrometry. The free energy for electron capture was -106 kJ/mol, and the reaction was slow, presumably as a consequence of the reduced species having a η^2 structure. The tricarbonyl radical anion lost CO with a thermal activation energy of about 80 kJ/mol, to form (η^4 -butadiene)Fe(CO)₂⁻¹⁴⁹. The reaction pathway in multiphoton dissociation of (butadiene)Fe(CO)₃ and several related diene complexes has been studied, using pressure-dependent measurements and RRKM theory¹⁵⁰. A series of solid (diene)tricarbonyliron compounds, when doped with iodine, showed semiconducting behavior. Formation of (diene)FeI₂(CO)₂ was indicated by means of Mössbauer, IR and CPMAS NMR spectra¹⁵¹.

Sorbic acid complexes [MeCH=CH-CH=CHCO₂H]Fe(CO)₂L [L = CO, PPh₃, PEt₃, P(OPh)₃] were synthesized from LFe(CO)₄ and sorbic acid under UV irradiation; their Mössbauer spectra were discussed in terms of variable back-bonding from iron to L^{152} . Two isomeric η^4 phosphonate products resulted from reaction of a pentadienyliron cation with trimethyl phosphite (Eq. 7). Diene complex 24 was also synthesized by BF₃-induced reaction of (ECH=CH-CH₂OAc)Fe(CO)₃ with trimethyl phosphite, and used in Wit-

tig-Horner-type chain extensions. Haptomeric mixtures of η^4 triene complexes resulted 153 .

Some benzylic and complexed allylic alcohols (Eq. 8) were oxidized to carbonyl compounds by diiron nonacarbonyl, in a process suggested to involve hydride transfer to $Fe(CO)_4$, forming an RCH=OH⁺ HFe(CO)₄⁻ ion pair, followed by proton transfer. The coordinated Fe(CO)₃ group in the example shown facilitated the reaction by stabilizing the intermediate cation¹⁵⁴.

1,3-Dipolar addition of nitrile oxides to the free vinyl group of $(\eta^4 - RCH = CH - CH = CH - CH = CH_2)Fe(CO)_3$ [R = Me, CO₂Me, and CH2OSiPh2CMe3] occurred with high (9:1) face selectivity in the isoxazoline products¹⁵⁵. The ylide from trimethylsulfonium iodide reacted with the aldehyde group of $(\eta^4-MeCH=CH-CH=CH-$ CHO)Fe(CO)₃ to form diastereomeric epoxides in 22% combined yield¹⁵⁶. $(\eta^4 - MeO_2C - CH = CH - CH = CH - CHO)Fe(CO)_3$ served as the starting material in an asymmetric synthesis of the natural products (-)verbenalol and (-)epiverbenalol. Steps carried out in the presence of the iron tricarbonyl group included condensation of the aldehyde group with Meldrum's acid, followed by conjugate addition of methylmagnesium iodide to the $\alpha_{\beta}\beta$ -unsaturated system¹⁵⁷. Synthesis of long-chain glycols related to the leukotrienes from (n⁴-Me₃CPh₂SiOCH=CH-CH=CH-CHO)Fe(CO)₃ has been carried out, with the key step being diastereoselective hydroxylation (using OsO₄) of C=C double bonds conjugated to the coordinated diene group¹⁵⁸.

Reaction of 25 with water under basic conditions led to removal of the metal group and partial hydrogenation of the diene. The free ligand of 25 was reduced by iron carbonyls in the presence of water to the cyclohexenol and the cyclohexadiene derivatives¹⁵⁹. A crystal structure of 26 confirmed previous spectroscopic deductions concerning its relative and absolute configurations¹⁶⁰. 1-(Dimethoxymethyl)-5,6-dimethylidene-7-oxabicyclo[2.2.1]hept-2-ene underwent iron carbonyl-induced cyclodimerization during attempted complexation, forming <u>inter alia</u> 27 (crystal structure) and isomers with <u>exo</u> and <u>endo</u> Fe(CO)₃ groups and <u>cis</u> and <u>trans</u> CH(OMe)₂ groups¹⁶¹. Complexation of 2,3,5,6tetramethylidenebicyclo[2.2.1]heptan-7-one with diiron nonacarbonyl gave <u>exo</u>, <u>exo</u> and <u>endo,exo</u>-bis[Fe(CO)₃] complexes. Some mixeb complexes with iron tricarbonyl and u-)TD)bis)indenyl)rbodiumm groups on separate diene moleties were <u>also</u> prepared¹⁶².

The four-electron ligand, 4,5-diethyl-l,3-dihydro-l,3,6,6tetramethyl-l,3-diborapentafulvene gave an iron tricarbonyl complex, 28, upon reaction with tricarbonylbis(cyclooctene)iron¹⁶³. Depending upon the degree of bonding between the boron atoms and the iron, the compound can be viewed as anywhere between η^4 and η^6 . The extreme deshielding of the 6-carbon in the ¹³C NMR (230 ppm) was consistent with substantial carbocationic character.

Formation of enone complexes, $(\eta^4 - \text{MeCH}=\text{CH}-\text{CR}=0)\text{Fe(CO)}_2 - (\text{PPh}_3)$, in 60-90% yields, by reaction of $(\eta^3 - C_3H_5)\text{Fe(CO)}_3^-$ with alkyl halides, RX {R = Me, Et, Bu, etc.}, followed by PPh_3^{138}, was previously described in Sect. 5. FAB mass spectra of a number of (enone)\text{Fe(CO)}_3 compounds have been recorded and discussed¹⁶⁴.

Two groups have independently studied and described reaction of enone complexes with carbanions to form 1,4-diketones, a reaction that evidently involves attack of carbanion at an iron carbonyl, followed by migration of the resulting acyl group to the enone β -carbon^{165,166}. Enones used included benzylidene-, ethylidene-, and methylidene-acetone, and the carbanions included Grignard, organolithium, and organocuprate reagents. Treatment of (PhCD=CD-CMe=D)FelCD₃ with methyl-lithium under a CD atmosphere rather than N₂, however, produced a guite different result: formation of the vinylketene complex (η^4 -PhCH=CH-CMe=C=O)Fe(CO)₃ [crystal structure]. In the presence of triphenylphosphine, $(\eta^{4}-PhCH=CH-CR=C=0)Fe(CO)_{2}(PPh_{3})$ was obtained. The enal complex $(\eta^{4}-PhCH=CH-CH=O)Fe(CO)_{3}$ did not give a vinylketene complex under CO; instead, a small amount of the triene complex $(\eta^{4}-PhCH=CH-CH=CH=CH=CH=CH=CH=CH)Fe(CO)_{3}$ was obtained. Attack of CO or PPh₃ on a vinyl-carbene-Fe(CO)_{3} complex was suggested as a possible mechanism for these novel reactions¹⁶⁷.

Reactions of carbanions with enimine complexes $(\eta^4-PhCH=CH-CR=NPh)Fe(CO)_3$ [R = H, Me] have also been studied. Ph₂CHLi attacked at the imino carbon, producing PhCH=CH-CH(CHPh₂)NHPh, and NCCMe₂CLi did likewise¹⁶⁸. An apparently different result was obtained on addition of aryl-lithium reagents to $(\eta^4-PhCH=CH-CH=CH=N-C_6H_3Me_2)Fe(CO)_3$. Quenching with triethyloxonium fluoroborate at -60° produced **20**, with the aryl group clearly having attacked the iron¹²⁷.

 $\eta^4-\text{Diazadiene}$ complexes were formed from the more stable $\eta^2-\text{N,N'}$ structure upon photolysis, especially with long wavelength light $^{76,77}.$

6c. Complexes of Cyclic Dienes

X-ray crystal structures of both dicarbonyl(η^4 -tetraphenylcyclobutadiene)(trimethylphosphite)iron and the fluoroborate salt of its one-electron-oxidized cation have been determined, allowing an assessment of the structural consequences of removing an electron from the iron-based HOMO. The iron-carbon and carboncarbon bonds of the cyclobutadiene ligand were little affected, but the iron-phosphorus and iron-carbonyl distances lengthened appreciably, presumably as a consequence of diminished backbonding¹⁶⁹. Iron tricarbonyl complexes were prepared by direct complexation of tris(tert-butyl)trimethylsilylcyclobutadiene and of tris(<u>tert</u>-butyl)azacyclobutadiene with diiron nonacarbonyl¹⁷⁰. Analogous Fe(CO), complexes of the cyclobutadiene analogs, diazadiboretidines, [RBNR']₂ [R = Me, Et, Pr, Bu, R' = CMe₃; R = R' = CHMe₂], have also been prepared 171. And an Fe(CO)₃ complex of 2,4-di-tert-buty1-1,3-diphosphacyclobutadiene resulted when Me₃C-C = P reacted with $(C_8H_{14})_2Fe(CO)_3$ or $Fe_2(CO)_9^{172}$.

Attack of aryl-lithium reagents on tricarbonyl(η^4 -cyclopentadiene) iron occurred at a carbonyl group. Quenching of the resulting acyl anion with triethyloxonium fluoroborate occurred by hydride transfer from the cyclopentadiene ligand, to form CpFe(CO)₂COAr¹⁷³. The η^4 -cyclopentadiene complex 29 was prepared with complete facial selectivity by reaction of the hydrocarbon with Fe₂(CO)₉, but use of (benzylideneacetone)Fe(CO)₃ resulted in formation of η^5 products with fission of a C-C bond¹⁷⁴. The cyclophanoid bis[Fe(CO)₃] complex **30** also resulted from complexation of the free ligand with diiron nonacarbonyl¹⁷⁵. The electron-rich pentafulvene complex $[\eta^4-C_5H_4=CPh_2]Fe(PMe_3)_3$ [from reaction of (benzene)Fe(PMe₃)₂ with 6,6-diphenylpentafulvene] showed very high electron density at the exocyclic carbon, which was protonated by methanol¹⁷⁶. The contrast with the fulvenoid **28** is impressive.

Several Fe(CO), complexes of 2,3,4,5-tetraphenylsilacyclo-

pentadienes having chloro, phenyl, and methyl substituents on the silicon have been prepared¹⁷⁷. Likewise, 31 was formed by direct complexation. Photolysis of 31 in methanol resulted in replacement (with retention of configuration) of the Fp group by a methoxy group¹⁷⁸. Dther substitution reactions of $(\eta^4-\text{silole})-Fe(\Omega)_2$ have been studied. In general, <u>exp</u> leaving groups showed enhanced reactivity, and retention of configuration was observed. Attack of organolithium reagents on the <u>endo</u>-chlorosilole complex occurred at a carbonyl group, with the acyl anion then displacing chloride intramolecularly to form the carbonoid product 32^{179} . Reaction of $(\eta^1-\text{thiophene})Re(CO)_2Cp^*$ with diiron nonacarbonyl gave the η^4 iron complex without disruption of the S->Re bond¹⁸⁰.

Reaction of substituted 4-vinylcyclohexenes with Fe(CO)₅ under conditions sufficiently vigorous to result in hydrogen migrations led to mixtures of 1- and 2-substituted cyclohexadiene complexes and complexes of substituted 1-vinylcyclohexenes. The 2-substituted cyclohexadiene complexes were generally favored under conditions of thermodynamic control, but the 1-substituted isomers could be favored by inclusion of ferrous chloride in the reaction mixture¹⁸¹. The use of ¹³C NMR for establishing the structures was recommended, making use of the 15-23 ppm deshielding of carbons of the complexed diene moiety by directly attached alkyl substituents¹⁸².

34

A crystal structure of 33 has been reported¹⁸³. A family of complexes having the diene units of the propellane 34 coordinated to <u>exo</u> and <u>endo</u> $Fe(CO)_3$ and CoCp units in various combinations have been studied¹⁸⁴. Mass spectra of the three $(C_{13}H_{11}NO_2)[\eta^4 - Fe(CO)_3][\eta^4 - CoCp]$ stereoisomers obtained have been compared and interpreted¹⁸⁵.

Although $(\eta^4$ -naphthalene) iron tricarbonyl has eluded synthesis, use of arenes or phosphites rather then CO as ancillary ligands has proven conducive to formation of $(\eta^4$ -naphthalene) iron complexes. Thus, co-condensation of iron vapor, 1,4-dimethyl-naphthalene, and triethyl phosphite produced $(5-8-\eta-1,4-dimethyl-naphthalene)$ Fe[P(OEt)₃]₃, whose structure was confirmed by X-ray crystallography. But iron vapor, 1,4-dimethylnaphthalene and p-xylene gave both 1-4- η and 5-8- η isomers of $(\eta^4$ -dimethylnaphthalene)Fe(n⁶-C₆H₄Me₂). And 1-methylnaphthalene gave two isomeric $(\eta^4$ -methylnaphthalene)Fe(\eta^6-PhMe) complexes upon reaction with bis(toluene)iron at -50° 186.

The crystal structure of the complex 35, a hetero analog of a η^4 -m-xylylene complex, showed normal Fe-C bond distances of 2.10-2.19 A, but distortions of the ligand from planarity brought the Fe.....B non-bonding distances up to 2.46 Å¹⁸⁷.

Complexes 36 [R = CH₂Ph, Et] have been prepared by photoreaction of the free trienes with $Fe(CO)_5^{188}$. An $Fe(CO)_3$ complex of 1,4,5,8-tetrahydronaphthalene was prepared similarly¹⁸⁹.

Reaction of tricarbonyl(η^4 -cyclohexadiene)iron with aryllithiums, then alkylation with triethyloxonium fluoborate, produced 37 [R = Me, OMe, CF₃], evidently the result of aryl attack at a carbonyl group and acyl group migration to the ligand¹⁹⁰. <u>tert</u>-Butyl lithium attacked the <u>exo</u>-cyano group of (η^4 -2-methoxy-5-cyanocyclohexa-1,3-diene)tricarbonyliron to form, after hydrolysis, the ketone. No decyanation was observed¹⁹¹. Intramolecular reaction of pendant alkenyl groups with the iron in complexed cyclohexadienes led to C-C bond formation, when the compounds were heated at 140° in the presence of CO or PPh₃, or at 50° with use of trimethylamine oxide to initiate the reaction (Eq. 9)¹⁹². The tricarbonyliron group was used to protect the cyclohexadiene unit of ergosteryl acetate, allowing functional group manipulations on the side chain. Reactions successfully performed in-

References p. 191

cluded hydroxylation of the side-chain double bond, oxidation of the diol with MnO_2 , reduction of the aldehyde with $Ca(BH_4)_2$, and oxidation of the aldehyde to the acid¹⁹³. Synthesis of the antitumor agent, (+)-taxodiene, from (-)-abietic acid has been carried out, with formation of an iron tricarbonyl complex from abietic acid the first step^{194,195}. Many additional examples of cyclohexadiene complexes and their applications to synthesis, which involve interconversion with η^5 -cyclohexadienyl complexes, are described in Section 7a of this Review.

Two reactions of $(2-5-\eta-1H-azepine)$ tricarbonyliron with electrophiles have been reported. Both electrophiles, tropylium ion and dibenzoylacetylene, attacked at the 6-carbon, consistent with previous findings that the azepine complex reacts predominantly as an enamine¹⁹⁶. Iron tricarbonyl complexes of substituted cycloheptatrienes have been deprotonated, and the anions allowed to displace chloride from 2-chlorotropone, forming [7-(2troponyl)-6-methoxycycloheptatriene]Fe(CO)₃ from the 7-methoxycyclcheptatriene complex, for example¹⁹⁷. The 1.3-haptotropic rearrangement of the tricarbonyliron group in 8-substituted (1-4- η -heptafulvene)Fe(CO)₃ has been studied. The activation barriers G[‡] for anti->syn rearrangement were 88 kJ/mol

for the 8-CHPn, and 76 kJ/mol for the 8-CHPn, and 76 kJ/mol for the 8-CHPn derivatives 198. Although the authors, following Brookhart, described the transition state as η^2 , this observer considers 38 a more plausible description, supported by the stabilizing effect of the methoxy group.

38

Reaction of $(3,7,7-\text{trimethylcycloheptatriene}) \text{Fe}(CO)_3$ with TCNE gave an equilibrium mixture of [2 + 2] and [3 + 2] cycloadducts. Interconversion of the two adducts was studied kinetically, and the results were interpreted in terms of a concerted migration, termed a "[2,2]-sigmahaptotropic rearrangement*199,200. A deuterium labelling study of the rearrangement of the [3 + 2] adduct of $(\eta^4 - C_7 H_8) \text{Fe}(CO)_3$ and TCNE into the [6 + 2] adduct showed that it occurred without hydrogen migration; a [4,4]-sigmahaptotropic rearrangement was suggested²⁰¹.

The low-temperature decomposition of $(OC)_3Fe(\mu-C_7H_7)Rh(COD)$ under a hydrogen atmosphere has been used to prepare new ironrhodium catalysts²⁰².

Structural changes which accompany reduction of $(\eta^4$ -cyclooctatetraene)Fe(CO)₃ have been studied by FT-IR spectroelectrochemistry²⁰³. Variable pressure ¹H NMR spectroscopy indicated a negligible activation volume for CO site exchange in (1,3-cyclooctadiene)Fe(CO)₂(PPh₃), for which a crystal structure was also reported. However, the analogous exchange process in (2,3,0- η^{3-} 7,7-dimethoxybicyclo[2.2.1]heptene)Fe(CO)₂(PPh₃) showed a Δv^{\dagger} of +5 cm³/mol, possibly due to 0 \rightarrow Fe bond dissociation²⁰⁴.

7. η^5 -DIENYL COMPLEXES

7a. Compounds with Open Pentadienyl Ligands

Treatment of the epoxide $(\eta^4 - \text{MeCH=CH-CH=CH-CH=CH-CH_2O}) \text{Fe(CO)}_3$ with acetic anhydride/HBF₄ resulted in ring opening to form (2-6- η -1-acetoxy-2,4-heptadien-6-yl)tricarbonyliron⁺ BF₄⁻. The product of malonate anion attack on the (1-carbomethoxypentadienyl)-Fe(CO)₃⁺ cation, previously thought to be the <u>E.Z</u>-diene complex, has instead been shown to be **39** [R = CHE₂]²⁰⁵. Trimethyl phosphite also attacked in part at the 2-position of the same cation,

producing **39** [R = P(=0)(OMe)₂] (crystal structure), along with diene complexes from attack at the 5-carbon¹⁵³. Alkynylcuprates selectively attacked 1-R-pentadienyl complexes [R = Me, Ph, E] at the 5-position to produce (trans. cis-dienyne)iron tricarbonyl complexes²⁰⁶.

E H Fe(CO)3

39

 13 C and 57 Fe NMR studies of bis(pentadienyl)iron and (cyclopentadienyl)(pentadienyl)iron compounds have been reported. These compounds show very deshielded (by 700-1100 ppm) iron in the 57 Fe NMR, in comparison to ferrocenes 207 . Photoelectron spectra of these compounds were measured and interpreted with the help of INDO calculations 208 .

Reactions of (cyclohexadienyl) $Pe(CO)_3^+$ cations, including their synthetic applications and the regioselectivities observed in their reactions, have been briefly reviewed²⁰⁹. Kinetic studies of the addition of substituted anilines with $(C_6H_7)Fe(CO)_3^+$ showed a linear correlation of rate with basicity, with a Brønsted slope of 1 and a Hammett slope of -3.2, consistent with a transition state having well-advanced C-N bond formation and significant positive charge on the nitrogen²¹⁰. Dimethylaluminum acetylides, Me₂Al-C=CR, transferred alkynyl groups to a terminal carbon of the cyclohexadienyliron cation without competing reduction reactions. (Me₃SiC=C)₃Al was the preferred reagent for introducing the trimethylsilylethynyl group²¹¹. Re(CO)₅⁻ also added as a nucleophile to the (cyclohexadienyl)iron cation, but the 5-substituted cyclohexadiene complex tended to rearrange to the 2-substituted²¹².

Use of an electron-rich benzene derivative as a nucleophile toward $(C_6H_7)Fe(CO)_3^+$ and oxidative cyclization of the product (Eq. 10) were key steps in a total synthesis of the antibiotic carbazomycin B^{213,214}. Me

Reaction of nitrosoarenes with $(C_6H_7)Fe(CO)_3^+$ led to formation of free radicals, which have been studied by ESR. Presumably the nitrosoarenes initially attacked the cation as nucleophiles, with the resulting $(OC)_3Fe(C_6H_7-N(=O)-Ar^+$ cations undergoing subsequent reduction to form the corresponding nitroxyl species or elimination to form Ph-N(-O')Ar²¹⁵. Electrochemical reduction of tricarbonyl(4-methoxy-1-methylcyclohexadienyl)iron cation gave a transient 19-electron species, which dimerized by coupling reactions at C(1) and C(5) to form bis[tricarbonyl(cyclohexadienyl)iron] species²¹⁶. Analogous radical intermediates and dimeric products were formed by treating solutions of $(C_6H_7)_2Fe_2(CO)_4$, which contained some 17-electron $(C_6H_7)Fe(CO)_2$, as shown by ESR, with CO or Ph₃P²¹⁷.

The enolates from chiral N-acyloxazolidinones were used as nucleophiles in reactions with $(3-methoxycyclohexadienyl)-Fe(CO)_3^+$, in order to obtain chiral products through asymmetric induction (Eq. 11). With the acetyl derivative [R = H], good

results (60% e.e.) were obtained, but the propanoyl derivative [R = Me] gave only 11% d.e.²¹⁸. Reaction of the (1-methyl-2-indolyl)cyanocuprate ion with (2-methoxycyclohexadienyl)Fe(CO)₃⁺ anion resulted in bond formation between the 3-carbon of the indole and the 5-carbon of the cyclohexadiene, forming **40** (71%)²¹⁹. Selective attack at the 5-carbon of the (2-methoxycyclohexadienyl)iron cation was employed in syntheses of two natural products, with

cyclopentenyl trimethysilyl ether as the nucleophile²²⁰. The formation and use of (2-arylcyclohexadienyl) iron tricarbonyl cations, which also reacted with nucleophiles selectively at the 5-position, has been described. An electron-rich aryl group was most effective²²¹.

Attack of lithium dimethylmalonate and related carbanions on

tricarbonyl(4-alkoxy-1-alkyl)cyclohexadienyl)iron⁺ cations in general resulted in mixtures of products, both 1- and 5-attack being observed²²². However, N-methylaniline, a reversible and more selective nucleophile, gave a spirocyclic product from ring attack at C5 (Eq. 12)²²³. Selective attack of tin enolates on Cl of tricarbonyl(4-methoxy-l-methylcyclohexadienyl)iron⁺ was the key step in syntheses of (\pm) -trichodermol and related natural products^{224,225}. Attack of the nucleophile $CH_2=C(OMe)OSiMe_3$ on

tricarbonyl(1,2-dimethoxycyclohexadienyl)iron⁺ occurred largely at Cl, allowing the formation of $(1-R-2-OMeC_6H_5)Fe(CO)_3^+$ [R = CH₂CO₂Me]²²⁶. Hydride removal from tricarbonyl(1,4,5,8-tetrahydronaphthalene) iron gave the expected (cyclohexadienyl) iron cation; less expectedly, reduction with $NaBH_A$ was said to give the starting tetrahydronaphthalene complex back, a surprising attack on the middle carbon of the complexed cyclohexadienyl cation¹⁸⁹.

Hydride abstraction from an equilibrating mixture of isomers led to preferential formation of tricarbonyl(1,3-dimethyl-4methoxycyclohexadienyl)iron^{+ 227}. Microbial oxidation of toluene produced homochiral 1-methylcyclohexa-1,3-diene-5,6-diol; this served as the precursor to homochiral tricarbonyl(6-methoxy-1methylcyclohexadienyl)iron⁺ cation after methylation, complexation, and hydride removal. This process, it is hoped, will provide a general route to resolved organoiron species of broad synthetic utility²²⁸.

Kinetic studies of reversible addition of substituted anilines to tricarbonyl(n^5 -cycloheptadienyl)Fe⁺ have been described. The results indicated an "ordered transition state mechanism"229. Attack of chiral sulfoximine ester enolates, PhS(=O)(=NR)CHE, on the cycloheptadienyl cation and on its triphenylphosphite-substituted analog, gave modest asymmetric induction²³⁰. Attack of nucleophiles on the (*i*- and *i*-carbomethoxycyclohephadienyllicon tricarbonyl cations was generally cleaner and more regioselective than con the unsubstituted cyclohephablenyl cation. Sobiobimethyl-malonate, for example, gave clean attack on C2 of the 1-substituted cation, and a mixture of attack at C2 (62%) and C1 (14%) of the 3-substituted cation²³¹. The attack at C2 is consistent with the formation of 39 from the open chain pentablenyl cation, $l_1-B-C_5H_6)Fe(CO)_3^+$ 205, reported at the beginning of this section.

7b. Cyclopentadienyldicarbonyliron Hydride (FpH) and Related Compounds

This section includes results on FpH, Fp^{*}, and Fp⁻, [Fp = $(\eta^5 - C_5 H_5)$ Fe(CO)₂], and on compounds containing bonds between the Fp group and elements of Groups 13-17, essentially in that order. (Organic derivatives Fp-R are treated in Section 7c.) Derivatives with one or more CO groups replaced by other 2-electron ligands or with Bubblituted cyclopentadienyl rings are included along with the analogous Fp compounds. Fp-transition metal compounds are treated as bimetallic compounds, and appear in Section 9c.

Sodium borohydride reduction of $(n_5^5-indenyl)Fe(CO)_3^+$ at -80° produced the formyl product, $(n^5-C_9H_7)$ Fe(CO)₂CHO, which decarbonylated above -55° to the hydride $(\eta^5 - C_{0H_7})$ Fe(CO)₂H²³². The homolytic bond dissociation energy of the Fe-H bond of Fp-H has been estimated as 209 kJ/mol, the weakest metal-hydrogen bond of those measured 80 . Consistent with this finding, reaction of FpH with $Co_2(CO)_{e}$ was found to produce $HCo(CO)_{A}$ and $Fp-Co(CO)_{A}^{233}$. The mechanism of the reaction of FpH with dienes to produce hydrometallated and hydrogenated products has been explored. CIDNP effects observed and reaction kinetics were consistent with a mechanism involving initial hydrogen transfer from FpH to diene to form Fp' and an allylic radical. Coupling of the two radicals in the solvent cage formed the hydrometallated product; dissociation led to reaction of the allylic radical with additional FpH to form the hydrogenated product. The dimer Fp_2 was eventually formed from the Fp radicals²³⁴. Solutions of FpB could be stabilized against decomposition to Fp_2 and H_2 by a trace of thiophenol²³⁴.

A review of the photochemical reactions of bimetallic species such as Fp₂ has summarized the evidence for 17-electron radical species (Fp) as intermediates in many of the reactions observed²³⁵. Picosecond-resolved infrared spectroscopy has been used to elucidate the details of photolysis of Fp₂ in cyclohexane. An unbridged Fp-Fp species appeared to form upon photolysis, with a rise time of 50 ps; this may be eventual precursor to Fp[•] radicals, but these were not observed within at least 4 ns²³⁶. Photolysis of Fp₂ in the presence of alkyl halides RX has been proposed as a synthetically useful means of generating alkyl radicals in solution²³⁷, presumably as a consequence of the reaction Fp[•] + RX \longrightarrow FpX + R[•].

Fp[•] was the chain carrier in the thermal chain reaction of Fp_2 with DPPE. These 17-electron radicals reacted with the ligand to form the 19-electron species Fp(DPPE), which reduced Fp_2 , forming $Fp(DPPE)^+$ and the radical anion Fp_2^- . Dissociation of the latter formed Fp^- and Fp^+ , which continued the chain²³⁸.

Sonication has been found to stimulate the reduction of the $[(C_5Me_5)Fe(CO)_2]_2$ dimer, Fp_2^* , by potassium metal²³⁹. The crystal structure of Na⁺(TMEDA) Fp⁻ showed coordinated sodium ions bridging carbonyl oxygens of adjacent CpFe(CO)2 units, forming a spiral chain structure 240 . Similarly, the crystal structure of Fp_2^{-} Na(THF)₄⁺ indicated linear chains formed by coordinated sodium ions joining bridging carbonyl oxygens^{240,2 $\overline{41}$}. Reactions of Fp with a number of metal carbonyl cations have been examined. Binuclear products, Fp-ML_n, ultimately formed, by a single electron transfer mechanism. However, a two-electron process, formally transfer of CO^{2+} , was also revealed by CO labelling. Thus, reaction of Fp⁻ with ¹³CO-enriched Mn(CO)₆⁺ produced enriched Fp2. The CO transfer presumably occurred via Fp-CO- $Mn(CO)_{5}^{242}$. Unexpected single-electron processes have been invoked to explain the reaction of NaFp with anionic hypervalent silicon and germanium species such as PhSi(catecholate) $_2^{-243}$. The second order rate constant for reaction of PPN⁺ Fp⁻ with methyl iodide in THF was about $3 \times 10^6 \text{ M}^{-1} \text{sec}^{-1}$, 10^3 faster than any other metal carbonyl anion, and it was even faster in acetonitrile²⁴⁴. However, NaFp reacted with CpW(CO)₃CH₂CH₂CH₂COC1 by deprotonation (with cyclization of the resulting carbanion), rather than by attacking the acyl chloride 245 .

The structure of $Fp(B_{11}CH_{12})$, from reaction of $Ag^+(B_{11}CH_{12}^-)$ with FpI, showed a three-center B-H-fe interaction, with B-H and H-Fe distances of 1.18 and 1.56 Å, respectively, and a B-H-Fe angle of 141°. Thus this weakly nucleophilic anion manages to coordinate significantly to the highly electrophilic Fp⁺ moiety ²⁴⁶. Reaction of Fp⁻ with $H_3B \leftarrow OR_2$ yielded $Fp(B_2H_5)$, whose crystal structure showed a diborane-like structure analogous to that of 19, with the Fp group replacing a bridging hydrogen in a three-center two-electron bond. The Fe-B distances were 2.217(3) Å¹²⁵. Fp₃In was formed by reaction of 3 equivalents of Fp⁻ with $InCl_3^{247}$. A compound having a FpHg⁺ bridging a Ru-Ru bond of an anionic triruthenium cluster has been prepared and characterized by $^{199}\mathrm{Hg}~\mathrm{NMR}^{248}.$

Displacement reactions of chloride from Fp- and Fp^{*}-SiR_nCl_{3-n} [R = Me, H] by azide have been carried out. Trimethyl phosphite converted the azides into iminophosphoranes such as Fp-SiMe(N₃)(N=PMe₃)²⁴⁹. Migration of the silyl group from iron to the deprotonated cyclopentadienyl ligand upon treatment of CpFe-(CO)₂SiR₃ with butyl-lithium has been found to occur with retention of configuration at silicon, by study of (R)-(+)-FpSiMePhNp [Np = 1-naphthyl]²⁵⁰. Analogous migrations of germyl, stannyl, and plumbyl groups upon treatment of FpZR₃ [R = Me, Ph] with lithium diisopropylamide or (less satisfactorily) butyl-lithium have been found. The trimethyl-lead and -tin compounds showed competitive demetallation with formation of Fp^{- 251}.

Synthesis of the Fp-silole ligand in 31 was achieved by reaction of the 1-chlorosilole with NaFp. Photolysis produced Fp_2 and 1,4-diphenylbutadiene, rather than a silaferrocene¹⁷⁸. Reaction of FpSiMeCl(CH=CH₂) with <u>tert</u>-butyl-lithium eventuated in formation of the disilacyclobutane 41, a dimer of the hoped-for Fp-Si(Me)=CHCH₂CMe₃. With larger groups R in FeSiRCl(CH=CH₂), the <u>tert</u>-butyl-lithium attacked a carbonyl group rather than the vinyl group²⁵².

Photolysis of several disilyl complexes Fp-Si₂R₅ resulted in loss of silylene units, to give Fp-SiR₃ products. Use of mixed phenyl and methyl groups gave results consistent with formation of equilibrating silyl-silylene complexes CpFe(CO)(=SiR₂)SiR₃ as intermediates 2^{53} . In an independent study, another group of workers found that the yield of FpSiMe3 from FpSi2Me5 improved dramatically when the reaction was carried out under a CO atmosphere rather than with an argon sweep. Lack of crossover products and results with FpSiMe₂SiMeEt₂ led to suggestion of the same silyl-silylene intermediate as proposed above²⁵⁴. Photolysis of oligosilanes such as FpSi₄Me₉ led to redistribution reactions, in this case to produce FpSi(SiMe₃)₃. Silylene fragments were not expelled²⁵⁵. Cyclosilanyl-Fp compounds have been prepared and characterized by NMR methods, including the first measurement of a ²⁹Si-⁵⁵Fe one-bond coupling constant, 12.1 Hz in $Fp-Si(Me)(Si_5Me_{10})^{256}$. Photolysis of this same compound resulted in rearrangement to FpSi(SiMe₃)(Si₄Me₈)²⁵⁵.

 $1,1-Fp_2-3,4-dimethylgermacyclopent-3-ene$ was prepared by chloride displacement from the dichlorogermacyclopentene. Pyrolysis at about 150° produced dimethylbutadiene and, presumably, the germylene Fp_2 Ge. The fate of the latter fragment

was not apparent 257.

The 119Sn chemical shifts in a series of compounds Cp'Fe-(CO)LSnMe₃ [L = various phosphines] correlated with the Tolman cone angle of L²⁵⁸. Mössbauer spectra of Fp₂SnArZ [Z = ONO₂, ONO, N₃, etc.] have been studied; the iron parameters were little affected by changes in Ar and Z, whereas the tin parameters were affected²⁵⁹. Several derivatives of 42 have been prepared, and one of them subjected to a crystal structure determination. The Fe-Sn bond distances were about 2.53 Å²⁶⁰. Insertion reactions of R₂Y [Y = Sn or Pb; R = CH(SiMe₃)₂] with FpX yielded FpYR₂X. Displacement reactions of iodide or bromide from tin occurred readily. FpSnR₂H served as a reducing agent, converting benzoyl chloride to benzaldehyde. The ¹¹⁹Sn chemical shifts of FpSnR₂X [X = halogens, H, and OMe] correlated with the Taft $\sigma_{\rm I}$ constants for X²⁶¹.

Photolysis of FpI in the presence of diisopropylamine as base and succinimide or phthalimide was reported to produce the N-Fp derivatives. Thermal substitution of triphenylphosphine for CO produced the N-Fp' analogs²⁶². A more novel route to a Fpheterocycle lay in cycloaddition of dimethyl acetylenedicarboxylate to CpFeL₂N₃ [L₂ = Ph₂P-CH=CH-PPh₂]. The azide group behaved like a triaza-allyl group, reacting with migration of the iron group to form **43** (crystal structure)²⁶³.

Amino- and diamino-substituted phosphine complexes $Fp[P(NR_2)(OMe)_2]^+$ and $Fp[P(NR_2)_2(OMe)]^+$, made by displacement of chloride from FpCl, underwent facile demethylation to form $Fp[P(=0)(NR_2)(OMe)]$ or $Fp[P(=0)(NR_2)_2]^{264}$. A crystal structure of similarly-obtained $\{Fp[P(=0)(NEt_2)_2]\}_2FeCl_2$ showed a rather normal Fp-P bond length of 2.24 Å, and coordination of phosphoryl oxygens to the "inorganic" iron. The latter was displaced from coordination by pyridine²⁶⁵. Like the silyl groups previously discussed, the phosphoryl groups in $FpP(=0)(OEt)_2$ and related compounds migrated to the cyclopentadienyl ring upon deprotonation of the latter with lithium diisopropylamide²⁶⁶.

 $Fp^*-P=N-Ar$ [Ar = 2,4,6-tri-t-butylphenyl] was prepared from Cl-P=N-Ar and KFp^{*}; the Fe-P bond length was 2.20 Å²⁶⁷. The diphosphenyl complex $Fp^*-P=P-Ar$ formed $Fp^*-P(S)=PAr$ upon reaction with one equivalent of sulfur. Heating caused cyclization to the

thiadiphosphirane. Selenium analogs were prepared similarly²⁶⁸. Reaction of $Pp^*-P=P-Ar$ with acrolein formed the heterocycle 44²⁶⁹.

The effect of the bidentate ligands on the structures of $CpFe(DPPM)L^+$ and $CpFe(DPPE)L^+$ [L = CO, NCMel has been examined. DPPM appeared to cause a shortening of the Cp-Fe distance^{270,271}. Photochemically induced exchange of CO and MeCN in CpFe(DPPM)L⁺ produced a photochromic system. Electrochemistry of these systems was explored²⁷². The cation $(\eta^5-C_5H_4CHPh_2)Fe(PMe_3)_3^+$ was formed by methanol protonation of the electron-rich (6,6-diphenylfulvene) iron tris(trimethylphosphine)¹⁷⁶. [$\Omega-C_6H_4(PMePh)_2$]-FeCp(PCl₃)⁺ was obtained by PCl₃ displacement of acetonitrile, and its crystal structure was determined²⁷³.

 $[\Omega-C_6H_4(PMePh)_2]FeCp(PH_2Ph)^+$ was deprotonated with butyllithium, and the resultant phenylphosphido group coordinated to a pentacarbonylchromium group. A mixture of diastereomers was obtained, and the stereochemistry of the principal one $[(R^*,R^*),-(R^*)]$ was determined by means of a crystal structure²⁷⁴. Likewise, alkylation of the phenylphosphine complex with methyl or ethyl iodide produced predominantly the $[(R^*,R^*),(R^*)]$ diastereomers. At -95°, deprotonation of the methylphenylphosphine cation was stereospecific, and alkylations carried out at that low temperature proceeded with complete stereoselectivity²⁷⁵. Similarly the $[(R^*,R^*),(R^*)]$ methylphenylarsine complex was obtained in optically pure form by displacement of acetonitrile by racemic AsHMePh. Deprotonation and ethylation at -65° gave the optically pure complex of ethylmethylphenylarsine, from which the resolved arsine could be obtained by cyanide displacement²⁷⁶.

45 was obtained by displacement of chloride from the 2chloro-1,3,2-dithiarsolane by Fp⁻. NMR gave no indication of pyramidal inversion of the arsenic $atom^{277}$. A crystal structure of the triphenylarsine complex Fp-AsPh₃⁺ BF₄⁻ has been reported ²⁷⁸. The diarsene complex Fp⁺-As=As=Ar [Ar = 2,4,6-tri-t-buty]phenyll, prepared by reaction of Fp⁺-As(SiMe₃)₂ and ArAsCl₂, dimerized <u>in situ</u>. The monomeric diarsene could, however, be trapped by reaction with (cyclooctene)chromium pentacarbonyl to form Fp⁺-As[\rightarrow Cr(CO)₅]=As=Ar [crystal structure]. Reaction of SbCl₃ with appropriate amounts of NaFp produced Fp₂SbCl and
Pp_3Sb . The crystal structure of the latter showed the expected pyramidal antimony atom²⁸⁰.

A crystal structure of CpFe(CO)(O_2 CCF₃), produced along with FpCl upon protonolysis of CpFe(CO)(μ -CO)(μ -CH₂)FeCp(CO) with trifluoroacetic acid in methylene chloride, has been reported²⁸¹. Fp(THF)⁺ salts showed empirical catalytic activity for the Diels-Alder additions of enones, but the nature of the true catalytic species, possibly a trace impurity, remained elusive²⁸².

Transfer of Fp⁺ groups to an electrically non-conducting polymer of 3-methyl- and 3-hexylthiophene, using (CH₂=CMe₂)Fp⁺, gave a product with 10⁸-fold increased conductivity. Less than one-tenth of the thiophene rings were coordinated to iron²⁸³. Thiocarboxylate complexes Fp-SC(=O)Ar were produced by acylation of $Fp-S_{3,4}-Fp$. The crystal structure of the <u>o</u>-nitrobenzoyl compound was determined^{284,285}. Also determined was the crystal structure of benzalthiosemicarbazone S-coordinated to the Fp group, PhCH=N-NH-C(NH₂)=S-Fp⁺ PF₆⁻. This compound and similar monodentate complexes of thiosemicarbazide and other thiosemicarbazones were prepared by displacement of acetone from Fp-O=CMe₂⁺ PF_{c}^{-286} . The bidentate dithiocarbamate complexes $Cp^{*}Fe^{-1}$ $(S_2CNMe_2)L$ [L = CO, MeCN, THF, etc.] were oxidized to radical cations, which disproportionated or reacted with Me₂NCS₂⁻ to form $Cp^*Fe(S_2CNMe_2)_2^{+287}$. Refluxing Fp₂ with EtSH in ether formed $CpFe(CO) (\mu-SEt)_{2}FeCp(CO)^{288}$. 1,4,7-trithiacyclononane displaced both iodide and carbonyl ligands from FpI to form $CpFe(S_3C_6H_{12})^+$ (crystal structure). This cation gave a reversible one-electron oxidation in acetonitrile²⁸⁹

The iron-tellurium compounds $CpFe(CO)L-Te_{1,2}-FeCpL(CO)$ [L = Et_3P] were prepared by reaction of Fp_2 with Et_3PTe and excess triethylphosphine. The monotellurium compound reacted with Et_3PTe to form the ditellurium compound. "Low-temperature pyrolysis" of these compounds specifically produced solid-state FeTe and FeTe₂, along with CO, Et_3P , and ferrocene²⁹⁰.

FpX compounds have been found to catalyze the addition reactions of silyl ketene acetal, $Me_2C=C(OEt)OSiMe_3$, to aldehydes²⁹¹. Synthesis of [tris(trimethylsilyl)cyclopentadienyl]iron compounds, $[\eta^5-C_5H_2(SiMe_3)_3]Fe[P(OMe)_3]_2X$, direct from the ligands and FeX₂ has been described²⁹². The crystal structures of several highly hindered derivatives of FpX have drawn attention. In $(\eta^5-C_5Ph_5)Fe(CO)_2Br$, the phenyl substituents were canted by 49-143° from the cyclopentadienyl plane²⁹³. In (ArPPh₂)FeCp(CO)I the interest lay in the novel ligand, which had a coordinated diphenylphosphino group on the 4-position of a dibenzothiophene²⁹⁴. The conformation of $(\eta^5-Ph_2CHC_5H_4)Fe(CO)(PPh_3)I$ in the crystal had the benzhydryl group <u>anti</u> to the triphenylphosphine ligand, and the C-H group oriented toward the carbonyl ligand; NOE experiments in solution indicated the same preferential conformation. The isopropyl analog did not show this effect²⁹⁵. Conformational preferences of $(\eta^{5}-Me_{3}C-C_{5}H_{4})Fe(CO)LI$ in solution were studied by NMR and molecular mechanics methods. The triphenylphosphine compound in the crystal showed the <u>tert</u>-butyl group approximately eclipsed with the carbonyl group, which is believed also to be the most stable conformation in solution²⁹⁶. The crystal structure of $(\eta^{5}-FpC_{5}H_{4})Fe(CO)_{2}I$ has also been reported²⁹⁷.

The bridged compound **46** [Y = C \equiv C] was further coordinated by reaction with Co₂(CO)₈ to produce **46** [Y = C₂Co₂(CO)₆] (crystal structure). Reaction of either diiodide with LiBEt₃H gave unstable hydrides²⁹⁸. **46** [Y = CH₂CH₂CH₂] was prepared by iodination of the poly-

mer formed upon reaction of the trimethylene-bridged bis(permethylcyclopentadiene) with $Fe_2(CO)_9$. Reduction gave the bridged Fp_2^* -type dimer²⁹⁹.

7c. Fp-Acyl, -Alkyl, and -Carbene Complexes

 $CpFe(CO)_3^+$ [FpCO⁺] and other electrophilic Fp compounds reacted with the phenoxide complex $(C_6H_5O)Cr(CO)_3^-$ by one-electron transfer to form the dimer Fp2³⁰⁰. Photosubstitution reactions of the borole complexes $(\eta^5-C_4H_4BR)Fe(CO)_3$ [R = Me, Ph], which are isoelectronic with FpCO⁺, have been studied. Products included $(C_4H_4BR)Fe(CO)_2L$ [L = Me₃P, NCMe, CNCMe₃], $(C_4H_4BR)Fe (CO)L_2$ [L = PMe₃ and dienes], and $(C_4H_4BR)FeL_3$ [L = PMe₃, benzenel³⁰¹. Self-consistent charge and configuration calculations on $(\eta^5-B_4C_2H_6)Fe(CO)_3$ and analogous systems indicated that the tricarbonyliron group is weakly bound to the carborane cluster compared to the BH group which it formally replaces³⁰².

 $FpCS_2^{-}$ is more stable and easily studied than $FpCO_2^{-}$, but the assumption that they should possess analogous chemical properties has been questioned as a result of a study of their reactions with electrophilic compounds FpX [X = I, OTf, HgCll, Fp'I and $CpFe(CO)(NCMe)_2^{+}$. Reaction of $FpCS_2^{-}$ with the latter produced $Fp[\mu(\eta^1-C:\eta^2-s,s'-CS_2)Fe(CO)Cp$, whereas the CO_2 adduct formed no $(\mu-CO_2)$ species, but only the mixed dimer $CpFe(CO)(\mu CO)_2Fe(CO)(NCMe)Cp$. Likewise, reaction of $FpCO_2^{-}$ with Fp'I gave Fp_2 and only traces of FpFp', even though Fp^{-} and Fp'I gave 50:50 mixtures of the two products. Photolysis of FpOAc produced no dihapto $Cp(CO)Fe(O_2CMe)$ species, only Fp_2 being formed. Thus,

144

the FpCO₂ system differed sharply from FpCS₂ in giving no μ - or dihapto species^{303,304}.

The cyclic acyl species 47 (crystal structure) formed upon cycloaddition of methyl 2-butynoate with $Fp^*-P=P-Ar$ [Ar = 2,4,6tri-<u>tert</u>-butylphenyl] at 20°. Analogous species formed with several other electrophilic alkynes as well³⁰⁵. 48 resulted when the fused spiro[2.4]heptadiene starting material was allowed to react with (benzylideneacetone)Fe(CO)₃. With Fe₂(CO)₉, 48 was accompanied by a diiron complex. With the less-strained spiro-[4.4]nonadiene starting material, the alkyliron analog of 48 (no

CO-insertion) resulted with (benzylideneacetone)Fe(CO)₃, and 29 resulted with Fe₂(CO)₉¹⁷⁴. Another novel approach to Fp-acyls (aroyls in this case) involved reaction of $(\eta^{4}-C_{5}H_{6})$ Fe(CO)₃ with aryl-lithium reagents at -78° and quenching with triethyloxonium fluoborate. In this reaction, the triethyloxonium ion apparently removes a hydride ligand from the ring of the intermediate $(\eta^{4}-C_{5}H_{6})$ Fe(CO)₂=C(Ar)O⁻ rather than alkylating the acyl anion to form the carbenoid. The crystal structure of p-CF₃C₆H₄C(=O)Fp from this reaction was determined¹⁷³.

Acylation of $(\eta^5 - C_9 H_7)Fe(CO)_2 [C_9 H_7] = indenyl = Ind]$ with $Me^{13}COCl$ at -78° did produce the expected labelled acetyl complex (Ind)Fe(CO)_2⁻¹³COMe, but only if all of the (Ind)Fe(CO)_2⁻¹³ was consumed. If excess anion remained upon warming, or if the acetyl-labelled product was treated with Fp⁻, then a large amount of scrambled (Ind)Fe(CO)(¹³CO)COMe formed. This was the result of attack of the nucleophilic anion at an iron carbonyl group to form the equilibrating mixture 49^{306} :

An indirect way of bringing about migration of recalcitrant alkoxymethyl groups, so as to form acyls, has been developed. The alkoxymethyl complex (Ind)Fe(CO)₂CH₂OR [R = Me, Et] was treated with (Ind)Fe(CO)₂⁻ to form the bimetallic species (Ind)-Fe(CO)(μ -CO)₂Fe(Ind)(COCH₂OR)⁻. Reaction with methyl iodide

under 1 atmosphere CO formed the desired acyl complex (Ind)Fe-(CO)₂COCH₂OR in 50-60% yields. Secondary alkoxyacyl complex (Ind)Fe(CO)₂COCHMeOEt was formed similarly. Reversible $\eta^5 \rightleftharpoons \eta^3$ indenyl ring slippage was advanced as an important factor in formation and cleavage of the bimetallic intermediates³⁰⁷.

The crystal structure of Cp'Fe(CO)(PPh₂Et)COMe has been determined³⁰⁸. The space group of the crystal of CpFe(CO)(PPh₃)-COMe has been corrected from a previously reported determination³⁰⁹. T₁ values in solution for several acyl compounds, including FpCOR [R = CHMe₂, CHEt₂] and Fp'COR [same R's], have been studied³¹⁰.

Electrochemical oxidation of FpMe in $acetone/0.1 \text{ M LiClO}_4$ at -86° produced CpFe(CO)(L)COMe⁺ [L = $OCMe_2$, $OClO_3^{-1}$. The perchlorate underwent conversion to the acetone solvate. Thioanisole displaced acetone from CpFe(CO)($OCMe_2$)COMe via a dissociative pathway, whereas the reaction with the perchlorate analog proceeded much faster and via a different mechanism³¹¹. A study of infrared and electrochemical data for CpFe(CO)LMe, Cp'(CO)L-COMe, and CpFe(CO)LCOMe compounds with a range of phosphorus ligands L has led to classification of phosphorus ligands as pure σ -donors (e.g., R_3P , Ar_3P , R_2POR') and σ -donor + π -acceptors (e.g., $P(OR)_3$ and $P(OR)_2R$). pK_a values of the phosphines provided a reasonable measure of their tendency to function as pure σ -donors³¹².

Reaction of $Fp'C(=0)CH_2CH_2Ar$ [Ar = Ph, C_5H_4FeCp] with several electrophiles [HgCl₂, I_2 , HX, Et₃O⁺ BF₄-] was said to result in fragmentation to $Fp'CO^+ X^-$ and $ECH_2CH_2Ar^{313}$. Also leading to alkyl group cleavage was the reaction of Fp'COCH₂CH₂Ph with three equivalents of trimethylsilane or trimethylstannane, which afforded $PhCH_2CH_2CH_2OH$ and $CpFeH(CO)(YMe_3)_2$ [Y = Si, Sn]. FpCOCH₂CH₂Ph and FpCH₂CH₂Ph reacted similarly³¹⁴. Hydrosilylation of FpCOR [R = Me,Et,Pr], Fp*COMe, and (Ind)Fe(CO) COMe by dihydrosilanes was catalyzed by (PhaPhRhCl. FpCH(OSiEt_H)R was produced, using Et₂SiH₂. Branched chain acyls reacted sluggishly. With PhSiH₃, complete reduction to FpCH₂R resulted. The phosphite substituted analog, CpFe(CO)[P(OMe)] COMe, was converted to the vinyl compound CpFe(CO)[P(OMe)]CH=CH2 by catalyzed silanol loss. Only di- and tri-hydrosilanes participated in this reaction; Et₃SiH did not³¹⁵.

As previously shown, reaction of acyl complexes $FpCH_2COR$ [R = H, OMe, Ph, $p-C_6H_4OMe$, Fp, Fp^{*}, etc.] with $Fp(THF)^+$ transfers the electrophilic Fp⁺ group to the acyl oxygen. Using ringlabelled Fp groups having methylcyclopentadienyl (Cp⁺) and pentamethylcyclopentadienyl (Cp^{*}), it has been shown that the iron groups attached to the methylene group and the acyl oxygen exchange intramolecularly, and that the rate of exchange increases with electron-donating power of R^{316} . Charge distributions in vinylogous species such as 50 have been investigated by Mössbauer spectroscopy, which indicated "a considerable degree of polarisation"³¹⁷. Crystal structures of FpCH₂COFp, Fp^{*}CH₂COFp^{*}, and FpCH₂CH₂COFp were interpreted to show, by virtue of short CH₂-CO bonds and long acyl C-O bonds in the µ-ketene complexes, some contribution of a π -complex structure³¹⁸. Similar interpretations were made for heterobimetallic analogs FpCH₂COML_n [ML_n = NiCp(CO), Mn(CO)₅]³¹⁹.

50

The acetyl complexes $CpFe(CO)(PR_3)COMe [R = Me, Et]$ have been resolved by protonation with camphorsulfonic acid and recrystallization of the diastereomeric salts 320 . Chiral acyls Fp¹C(=0)CH₂R underwent stereoselective alkylation upon deprotonation with butyl-lithium and reaction of the enclate with BrCH₂CO₂CMe₃. Oxidation led directly to HOCOCHRCH₂CO₂CMe₃. The (R) enantiomer was obtained using (R) acyl³²¹. This methodology has been applied to the synthesis of the *a*-pentylsuccinate fragment of the natural product (-)-actonin³²². Similarly, reaction of the enolate from Fp'COCH2OCH2Ph with 2,3-epoxybutanes occurred with a high degree (10:1) of chiral recognition, allowing stereoselective synthesis of disubstituted -lactones³²³. Conversion of homochiral Fp'COCH2OR [R = menthyl] into its lithium enolate, then reaction with Et₂AlCl to form the aluminum enolate, and attack on Me₂CHCHO gave the aldol product Fp'COCH-(OR)CH(OH)CHMe, with good diastereoselectivity. Oxidation with bromine in the presence of ethylene glycol produced (R)-acetal Me₂CHCH (OH) CH $(O_2C_2H_4)^{324}$.

An asymmetric synthesis of cyclopropanecarboxylic acids has been developed using Fp' reagents. Nucleophilic methylenation of (\underline{E}) -Fp'COCH=CHR using CH₂I₂/MeLi at -78° produced the <u>trans</u> cyclopropane product in 80-90% chemical yield and 98% diastereoselectivity³²⁵. With (\underline{Z}) isomers, Simmons-Smith methylenation using CH₂I₂/Et₂Zn/ZnCl₂ produced comparable results³²⁶.

In a search for migration of carbon groups to 16-electron iron species, acyl species FpC(=0)R [R = 1-phenylcyclobutyl and 1-phenylcyclopropyl] have been photolyzed. The cyclopropyl species gave simple decarbonylation to form FpR. The cyclobutyl species also gave some decarbonylation, but accompanied by formation of 1-phenylcyclobutane-1-carboxaldehyde³²⁷.

Synthesis of several Fp^{*}-alkyls was conveniently achieved by sonochemically-induced reduction of Fp^{*}₂ with potassium metal, followed by direct addition of alkylating agent: MeI, EtI, or MeOCH₂X²³⁹. (FpCH₂)₃CH has been prepared by three-fold displacement from (MeSO₂OCH₂)₃CH. It decomposed rapidly in solution at 25° , giving Fp₂ and the cyclopropylmethyl compound FpCH₂C₃H₅. Reaction with two equivalents of Ph₃C⁺ proceeded with electronrather than hydride-transfer, and eventuated in loss of a Fp group and migration of a -CH₂Fp group, forming (η^2 -FpCH₂CH₂-CH=CH₂)Fp⁺. Photolysis of (FpCH₂)₃CH at 350 nm formed Fp₂ and CpFe(CO)[η^3 -CH₂-C(Me)-CH₂]³²⁸.

Some differences were revealed in the chemical properties of $FpCH_2CH_2CH_2Si(OMe)_3$ and its Fp^* - analog. Reaction of the Fpcompound with triphenylphosphine in refluxing acetonitrile proceeded with alkyl group migration (so-called "insertion") to form the acyl compound $Fp'C(=0)CH_2CH_2CH_2Si(OMe)_3$, but the Fp^* analog behaved differently. Electrochemical oxidation of both compounds occurred with rapid migration to form the acyl, accompanied by attack of solvent at the iron. But added triphenylphosphine attacked the iron upon oxidation only in the case of the lesshindered Fp compound³²⁹. $(Ph_5C_5)Fe(CO)_2Me$ showed only irreversible cyclic voltammetric behavior³³⁰. Reaction of $Fp(CH_2)_nFp$ in = 3-71 with phosphines has been shown to occur sequentially, with formation of the monoacyl product $CpFe(CO)L[CO(CH_2)_n]Fp$, then the diacyl³³¹.

Reactions of $FpCH_2X$ with neutral nucleophiles L [amines, phosphines, sulfides] have been studied. Depending on the halide X, the solvent, and the nucleophile, either $FpCH_2L^+$ or $CpFe(CO)-L_2^+$ was formed. In some cases, the latter product was shown to be formed from the former. The normal sequence of halide reactivities was observed, and rates of halide displacement depended on basicity and size of L^{332} .

Lithiation of the cyclopentadienyl ring of FpMe followed by reaction with Ph₂PCl produced the diphenylphosphino-substituted derivative. Coordination of the phosphorus to various tungsten groups $[W(CO)_2MeCp, W(CO)_2ClCp, W(CO)_3Cp^+]$ was readily achieved. Also prepared by analogous means was $Me(OC)_3W(\eta^5-C_5H_4PPh_2-\eta^1)$ Fe-(CO)Cp(COMe)³³³. Another route to bimetallic species was reaction of CpFe(CO)(η^2 -CH₂SMe), produced by photolysis of FpCH₂SMe at -78°, with reactive transition metal precursors to produce CpFe(CO)CH₂S(Me)ML_n [ML_n = Cr(CO)₅, Mo(CO)₅, W(CO)₅, MnCp'-(CO)₂]³³⁴.

Formation of η^3 -benzylic species upon low-temperature photolysis of FpCHRPh [R = H, OMe] has been studied quantitatively.

148

Formation of the unsaturated η^1 species from the η^3 was found to occur with free energies of activation of 50 and 64 kJ/mol for the unsubstituted and methoxy-substituted species, respectively. CpFe(CO) (η^1 -CH₂Ph) collapsed to the saturated η^3 species at a rate of 10⁸ s⁻¹ at 293 K. Reactions with phosphines to form CpFe(CO) (PR₃) (CH₂Ph) were also studied³³⁵. Independent flash photolysis experiments by another group gave results consistent with these, and showed that recombination of CpFe(CO) (η^3 -CH₂Ph) with external ligands showed low selectivity; the rate ratio between CO and PPh₃ was only 8.9³³⁶.

Fluxionality in substituted compounds $Fp(\eta^{1}-C_{5}H_{4}R)$ has been studied. The interconversion barrier in $Fp(\eta^{1}-C_{5}H_{4}Me)$ [56 kJ/mol] was higher than in FpCp [45 kJ/mol], whereas the barrier in $Fp(\eta^{1}-C_{5}H_{4}CONHSO_{2}C_{6}H_{4}Me)$ was lower. The crystal structure of the latter showed the substituent in the 1-position of the ring, not the 5-position as originally proposed to account for the twofold symmetry in the NMR spectrum³³⁷.

Cycloaddition of dimethyl acetylenedicarboxylate to $Fp(C_5H_4-Me)$ gave two 7-exo-(Fp)norbornadiene products, having the methyl group in the 5-position in the principal product and the 1-position in the minor product³³⁷. Eq.13 illustrates a formal cy-

cloaddition reaction of S_2O (from metal-assisted retro-Diels-Alder reaction of a dihydrodithiin oxide) with $FpCH_2C \equiv CR$ [R = Me, Ph]. The structure of the product with R = phenyl was verified by crystallography³³⁸. Cycloaddition of TCNE to $FpCH_2$ -CH=CH-CH=CMe₂ gave the [3 + 2] (cyclopentane) adduct in moderate yield; the uncoordinated double bond thus remained uninvolved in the reaction³³⁹.

<u>Cis</u>-fused dioxins (eq. 14) [R = H, CN, Ph], in which the Fp group can occupy a position anti-periplanar to the C-O bond, were found to rearrange readily to dioxolanes upon treatment with BF₃.

The <u>trans</u>-fused isomers, in which the Fp group was held in an axial position, were unreactive unless a phenyl substituent was present to stabilize developing positive charge³⁴⁰.

In a stereochemical investigation of cyclopropane formation, threo-FpCHDCHDCH₂SPh was alkylated with methyl triflate. Heating the resultant sulfonium salt to 65° gave <u>cis-cyclopropane-d</u>2, showing inversion of configuration of the carbon bound initially to iron³⁴¹. Conformational analysis of Fp'CH₂OR and Fp'CH₂SR by variable temperature NMR and NOE methods singled out the importance of steric interactions in controlling the preferred conformation(s). In the absence of strong steric effects, solvent polarity played a significant role 342 . Epimerization at the iron center of CpFe(CO)(L)Me [L = (S)-(+)-Ph₂PNMeCHMePh] and its $(\eta^5$ indenyl) analog has been studied under both thermal and electrochemical conditions. Thermally, the indenyl compound epimerized 10-20 times faster; upon electrochemical reduction, the reaction was very fast. Dissociation of the liqand L was implicated in each case³⁴³. Chiral analogs of Fp compounds resulted when the cyclopentadienyl ligand was replaced by $(\eta^5-1-tert-buty)-2-me$ thy1-1,2-azaboroly1) [Ab]. AbFe(CO)₂CH₂OR [R = menthy1] diastereomers were separated by HPLC and decomposed with iodine to give homochiral AbFe(CO)₂I. Alternatively, reaction of racemic AbFe-(CO)₂I with triphenylphosphine produced two diastereomers of AbFe(CO)(PPh₃)I in 4:1 thermodynamic ratio³⁴⁴.

Vinylic iron compounds, $Ph_2C=C(Ar)Fp$, from reaction of $Ph_2C=C(Ar)Li$ [Ar = phenyl, 1-naphthyl], gave 2-Ar-3-phenylindenl-ones on thermolysis in decalin. Addition of triphenylphosphine improved the yields to as high as 868^{345} . Electrochemical oxidation of CpFe(CO)LC(Ph)=CPhMe [L = P(OPh)_3] has been studied over the temperature range of -78 to 22° . At -60° the <u>E</u> and <u>Z</u> isomers gave distinguishable oxidation waves, but at temperatures warmer than -20° , rapid conversion of oxidized <u>E</u> cation to <u>Z</u> caused merger of the waves. Individual oxidation potentials and rates of interconversion were measured. The stereochemical preference of the neutral species for the <u>E</u> isomer (ca. 5:1) was dramatically reversed in the cations (1:900)³⁴⁶.

Reaction of FpSMe with HC=C-CN produced a number of products: the acetylide Fp-C=C-CN, Fp-C(CN)=C(SMe)Fp, NCCH=CHSMe, and a cyclic species, 51 (crystal structure). Reaction of the acetylide or its triphenylphosphine-substitution product with TCNE gave cyclobutene products 52. The triple bond also formed a $Co_2(CO)_6$ complex³⁴⁷ (cf. 46, Y = $C_2Co_2(CO)_6$). The triple bond in Fp- and Fp'-C=CPh reacted with nitrile oxides by 1,3-dipolar addition to form isoxazoles having the iron substituent at the 5position, next to oxygen. The Fe-C bond length in 2,3-diphenyl5-Fp'-isoxazole was a rather short 1.951(3) A^{348} . Reaction of (OC)₅Re-F-BF₃ with acetylides Fp-C=CR [R = Me, Ph] resulted in rearrangement of the Fp group, forming Fp[η^2 -RC=CRe(CO)₅]^{+ 349}. Attack of Et₂C₂B₄H₅⁻ on Fp'(η^2 -MeC=CMe)⁺ produced 53, which showed a three-center two-electron bond joining the carborane cage and the β -vinylic carbon. Heating at 110^o resulted in loss of Fp'H and formation of <u>nido</u>-4,5-Me₂-7,8-Et₂C₄B₄H₄³⁵⁰.

The vinylic fluoride of perfluoro-l-methylcyclopentene was displaced by K^+ Fp⁻ in THF, giving the vinyl-iron compound in good yield; an addition-elimination mechanism was indicated³⁵¹. Displacement of chloride from chloropentafluorobenzene was also observed³⁵².

The novel compounds 54 $[ML_n = FeCp(CO)_2Me, FeCp(CO)_2CH_2Ph, Mn(CO)_5 (crystal structure)] were prepared by lithiation of <math>(\eta^{5}-C_5H_4Fp)ML_n$ and reaction with FpI. (µ-Arylene)di-iron and triiron compounds have been prepared by reaction of di- and trii(chlorocarbonyl)benzenes with Fp⁻, and thermal decarbonylation in refluxing dibutyl ether. Thus prepared were 1,3- and 1,4-C₆H₄Fp₂ and 1,3,5-C₆H₃Fp₃ (55), and also methylcyclopentadienyl deriva-

tives. A perfluoro analog was prepared directly from $1,4-C_6F_4Li_2$ and $FpI^{353,354}$. Reaction with $Cr(CO)_6$ produced $(\eta^6-arene)Cr(CO)_3$ derivatives³⁵⁴, and $Mo(CO)_3$ and $W(CO)_3$ complexes were synthesized similarly³⁵⁵. Cyclic voltammetric studies of several of the chromium complexes showed reversible oxidation, with substantial transfer of charge from iron to chromium. The radical cations were stable even in acetonitrile, allowing isolation in some cases³⁵⁶.

A simplified, one-flask preparation of the useful cyclopropanation reagent $FpCH_2SMe_2^+$, and of the analogous Fp^* reagent, has been described³⁵⁷. Fp^*CH_2SR [R = Me, Ph] underwent facile alkylation at sulfur by Ph_3C^+ or $Fp^*CH_2^+$, and the tritylated sulfonium species served as a cyclopropanating agent³⁵⁸.

The stabilized carbene complex $Fp = C(OCH_2CH_2O)^+$ gave an unstable radical upon reduction with sodium naphthalenide; the radical rapidly decomposed to Fp2, CO2, and C2H4. Substitution of phosphines for CO was catalyzed by sodium naphthalenide. Reaction of the cation with nucleophiles produced ring-opened $FpC(=0)CH_2CH_2Nu$ [Nu = Cl, OMe, etc.]. The sulfur analog, Fp=C(SCH₂CH₂S)[‡], was the subject of a crystal structure. Upon reduction with sodium naphthalenide, it produced insoluble sulfides, little Fp₂, and no CS₂³⁵⁹. Photolysis of FpC(SMe)₃ produced CpFe(CO)[η^2 -(MeS)₂C=SMe], also preparable by thermal reaction of CpFe(CO)(NCMe)[=C(SMe)2] with NaSMe. Variable temperature NMR studies indicated an equilibrium between the n^2 species and the carbene complex CpFe(CO)(SMe)[=C(SMe)₂]. Reaction with two equivalents of R_3P produced $CpFe(CO)(PR_3)(SMe)$ and $R_3P=C(SMe)_2$, and reaction with Me_3O^+ gave $CpFe(CO)(SMe_2)=C(SMe)_2^+$ ³⁶⁰. In contrast, reactions of CpFe(CO) (η^2 -CH₂=SMe), described earlier in this section, gave no sign of equilibrium with the unstabilized carbene, CpFe(CO)(SMe)(=CH₂)³³⁴.

A stable methylene complex, $Cp^*Fe(DPPE)(=CH_2)^+$, has been prepared by reaction of the methyl ether $Cp^*Fe(DPPE)CH_2OMe$ with HBF₄. Cyclopropanation of styrene was initiated by electron transfer, with a coulomb efficiency of 100^{361} . Benzylidene complexes Fp=CHAr⁺ and Fp'=CHAr⁺ have been studied by variable temperature NMR to determine barriers to ring rotation. Benzylidene transfers to propene formed predominantly <u>cis-1-aryl-2-</u> methylcyclopropanes³⁶².

Homochiral acetyl complexes $CpFe(CO)(PR_3)COMe [R = Me, Et]$ were converted to homochiral ethylidene complexes by consecutive reaction with MeOTf, NaBH₄, and Me₃SiOTf at -78^O. Reaction with vinyl acetate gave cyclopropanes with high (89-97%) enantioselectivity³²⁰. By analogous methods, diastereomeric benzylidene complexes $CpFe(CO)(PPh_2R)(=CHPh)^+ [R = (S)-2-methylbutyl]$ were prepared and used to transfer benzylidene moieties to propene and vinyl acetate. The phenylcyclopropanes were formed with 43-92% enantioselectivity via a mechanism involving attack of the synclinal conformer of the benzylidene complex on the alkene and backside attack of the nascent carbocation on the iron-bound carbon³⁶³. The latter step is consistent with the stereochemical outcome in cyclopropane formation from FpCHDCHDCH₂SMePh⁺ ³⁴¹ and likewise in phenylcyclopropane formation from FpCHDCHDCHCHCH(OMe)Ph and Me₃SiOTf³⁶⁴.

Photosubstitution of PPh₃ into FpCH(OMe)Ph occurred via $\{\eta^3 - CH(OMe)Ph\}$, with high diastereoselection of 75:1. The selectivity was the result of thermodynamic preference, achieved through phosphine dissociation and recombination. Photosubstitution of triethylphosphine was studied similarly. Quenching of the benzylidene complexes CpFe(CO)(PR₃)(=CHPh)⁺ by methoxide ions and of CpFe(CO)(PR₃)[=C(OMe)Ph]⁺ by hydride in each case gave mixtures of diastereomers³⁶⁵.

Cationic carbene complexes have been reported to engage in intramolecular electrophilic attacks, as in Eq. 15. When a β -

phenylethyl group was present instead of the 4-butenyl group shown in Eq. 15, the insertion product, 2-phenyl-<u>trans</u>-hydrindan-4-one, was formed in 90% yield³⁶⁶. In a related intramolecular case, attack of a transient Fp-carbene cation on a double bond resulted in formation of a cyclohexene ring³⁶⁷.

7d. Cyclopentadienyliron Derivatives of η^2 to η^5 Ligands

 $(\eta^2-CH_2=CH_2)Fe(CO)_2Cp^+ [(C_2H_4)Fp^+]$ has been synthesized directly from Fp₂, ethene, and HBF₄, in 20% yield¹³². The inclusion of an appropriate oxidizing agent would probably further increase the yield. The Fp⁺ complex of 2,3-dihydrofuran has been synthesized from 3-bromo-2-methoxytetrahydrofuran by bromide displacement by Fp⁻ and removal of methoxide. The 3,4-dihydropyran analog was prepared similarly³⁶⁸. Their reaction with CHE₂⁻ resulted in clean addition of the nucleophile next to the oxygen and trans to the Fp group. With enol ethers and indole as nucleophiles, ligand exchange reactions and polymerization competed with the desired addition reactions³⁶⁹.

Attack of an organometallic nucleophile on $(CH_2=CHOMe)Fp^+$ at -78° occurred normally (Eq. 16)¹⁹¹. Reaction of $(CH_2=CHOMe)Fp^+$

with optically active alcohols gave diastereomeric. $(CH_2=CHOR)Fp^+$ cations [R = menthyl, bornyl, <u>sec</u>-butyl, etc.], which equilibrated rapidly at room temperature. The greatest diastereoselec-

tion (4:1) resulted in the menthyl case, and the absolute configuration of the predominant isomer was determined. Correlation of the circular dichroism spectra and the absolute configurations of these cations and cations ($CH_2=CHR$)Fp⁺ produced from homochiral epoxides was made³⁷⁰.

Studies of CpFe(CO) (η^3 -CHRC₆H₅) produced by low temperature photolysis of η^1 -benzylic precursors^{335,336} have been described in the previous section of this review. Less transient was the product, CpFe(CO) (η^3 -CH₂CHCHCO₂Me), produced in photolysis of FpCH₂CH=CHCO₂Me, which was characterized by X-ray crystallography. Further photolysis in the presence of phosphines produced CpFe(PR₃) (η^3 -CH₂CHCHCO₂Me), but an (η^5 -oxapentadienyl) intermediate could not be detected³⁷¹. In comparison, photolysis of three (η^1 -1-butadienyl)Fp compounds, which eventuated in formation of hydroxyferrocenes, was shown by low temperature photolysis with IR and NMR monitoring to occur through a sequence of η^3 and η^5 intermediates, shown as Eq. 17³⁷².

Photolysis of 52 [L = PPh₃] resulted in cleavage of a C-C bond to generate the novel η^3 -species 56³⁴⁷. Ring opening also resulted when $(\eta^1$ -1-phenylcyclopropyl)Fe(CO) (PPh₃)Cp was heated. Expulsion of PPh₃ resulted in formation of [η^3 -CH₂C(Ph)CH₂]Fe(CO)Cp³²⁷.

Irradiation of the borole complexes $(\eta^5-C_4H_4BR)Fe(CO)_3$ [R = Me, Phl in the presence of dienes produced several examples of $(\eta^5-C_4H_4BR)Fe(CO)$ (η^4 -diene), with dienes including butadiene, cyclopentadiene, cyclohexa-1,3-diene, and cycloocta-1,5-diene³⁰¹. Exhaustive photolysis of the cyclopentadiene complex formed

CpFeH(C₄H₄BR). Deprotonation of the latter produced a borataferrocene derivative³⁰¹.

Although they are closed-shell species isoelectronic with ferrocene, borataferrocenes have been found to form triple-decker molecules 57 with several metal moieties, through sharing of the borole ring. Examples of ML_n in 57 include $Rh(COD)^{301}$, Re- $(CO)_3^{373}$, M(CO)₄ [M = Nb³⁷⁴, Ta³⁷⁴, and V³⁷⁵], and M(CO)₃ [M = Cr, Mo, and W^{375}]. All of these examples are 30-electron tripledeckers, and all were susceptible to degradation by nucleophiles^{374,375}. A more boron-rich analog of these triple-deckers is the compound $CpFe(\mu-Et_2C_2B_3H_3)CoCp$, a 29-electron species prepared by treatment of $(\eta^{6}-1,3,5-cyclooctatriene)Fe(Et_{2}C_{2}B_{3}H_{4})^{-1}$ with sodium cyclopentadienide and cobalt(II) chloride, followed by air oxidation³⁷⁶. Similarly, $(\eta^6 - C_8 H_{10}) Fe(R_2 C_2 B_4 H_4)$ [R = Et, CH₂Ph] has been converted to the paramagnetic triple-deckers, $(\eta^5 - C_2 R_2 B_4 H_4)$ Fe $(u - Et_2 MeC_3 B_2 Et_2)$ CoCp and $(\eta^5 - R_2 C_2 B_3 H_5)$ Fe $(\mu - Et_2 Me-$ C₃B₂Et₂)CoCp. The redox chemistry of these species was investi $gated^{377}$.

New complex salts of $bis(\underline{o}-dicarbollyl)iron(III)$, $(\underline{o}-CB_{9}H_{11})_{2}Fe^{-}$ with bpy- and 1,10-phenanthroline-coordinated cations such as Na(bpy)₂⁺ and Fe(bpy)₄²⁺, showed no C-H bands in the IR, suggesting deprotonation of the carborane by the amines³⁷⁸. A phenylene-bridged bis(dicarbollide), $C_{6}H_{4}(\eta^{5}-7,8-C_{2}B_{9}H_{10})_{2}Fe^{-}$ resulted when the $(C_{2}B_{9}H_{11})_{2}Fe^{-}$ anion was allowed to react with benzenediazonium ion³⁷⁹.

1,2,5-Trimethylpyrrole displaced the dimethyl sulfide ligands from CpFe(SMe₂)₃⁺ to form the η^5 -pyrrole complex or azaferrocene, CpFe(n⁵-C₄NMe₃H₂)⁺ ³⁸⁰. The pK_a of CpFe(η^5 -C₄Me₄NH)⁺ (7.2) was similar to that of alkylpyridines. The deprotonated azaferrocene CpFe(C₄Me₄N) readily formed adducts with Lewis acids, including CH₃⁺, MeCO⁺, BH₃ and Fe(CO)₄. The crystal structure of the BH₃ adduct, isosteric with pentamethylferrocene,

showed eclipsed rings³⁸¹. An analogous bis adduct, $(\pi^5-C_4Me_4NBH_3)_2Fe$, has been prepared from the previously described bis(tetramethylpyrrolyl)iron-tetramethylpyrrole adduct and characterized by crystal structure³⁸². Reaction of the adduct with AgBF₄ gave the novel bridged species **58**³⁸³.

A study of acylated phosphaferrocenes in strong acids has indicated that the preferential site of protonation in all cases was the acyl oxygen rather than phosphorus or iron lone pairs³⁸⁴. Electrochemical oxidation of phosphaferrocenes and diphosphaferrocenes in the presence of nucleophiles such as chloride, bromide, or bipyridyl showed that the cations are more susceptible to nucleophilic attack than ferrocenium ions³⁸⁵. Phosphorus-based unshared electron pairs of the pentaphosphaferrocene, $Cp^*Fe(\eta_5^-P_5)$, were sufficiently basic to coordinate with transition metals. Thus, reaction with (THF)Cr(CO)₅ gave the 1,3-bis[Cr(CO)₅] derivative. Up to four MnCp(CO)₂ units could be coordinated to the P₅ ring. Irradiation of $Cp^*Fe(P_5)$ with $CpFe(C_6H_6)^+$ gave a 30electron triple decker complex, $CpFe(\mu-P_5)FeCp^* + 386$. An extended Hückel MO study of $CpFe(P_5)$ and related compounds indicated metal-ring bonding as strong as in carbon analogs. The patterns of MO interactions differed in detail, but led to strong bonding³⁸⁷.

8. COMPOUNDS WITH η^6 -ARENE LIGANDS

The large majority of compounds dealt with in this section have arene ligands, but a few show η^6 bonding to a bis(allyl) or triene moiety. An example of a bis(allyl) species is 37, previ-

ously mentioned in Section 6c. A more exotic example is **59**, formed (along with penta- and hexaphosphaferrocenes, $(\eta^{6}-$ PhMe)Fe $(\eta^{4}-\pm$ Bu₂C₂P₂), and polycyclic oligomers) upon reaction of Me₃C-C \equiv P with $(\eta^{4}-1-MeC_{10}H_{7})Fe(\eta^{6}-PhMe)$. Although formally a 16-electron species, **59** was described as a very stable substance³⁸⁸. P P P P P P P P P P

59

Reaction of CO or trimethyl phosphite with $(C_6H_6)Fe(PMe_3)_2$ resulted in displacement of trimethylphosphine ligands and retention of the coordinated benzene ring, whereas $(C_6H_6)Fe(DMPE)$ reacted by displacement of the benzene ring¹⁷⁶. At -50°, 1methylnaphthalene reacted with bis(toluene)iron to displace one toluene molecule, forming two coordination isomers of $(\eta^{4}-1-MeC_{10}H_7)Fe(\eta^{6}-PhMe)$. Likewise, co-condensation of iron vapor, 1,4-dimethylnaphthalene, and <u>p</u>-xylene, produced two isomers of $(\eta^{4}-dimethylnaphthalene)Fe(p-xylene)$. Reactions with phosphites resulted in displacement of the η^{4} ligands, giving the $(\eta^{6}-arene)FeL_2$ products¹⁸⁶.

An unusual combination of ligands was assembled in $(\eta^{6} - arene)Fe(\eta^{3}-C_{3}H_{5})(CO)^{+}$, which formed when $(C_{3}H_{5})Fe(CO)_{3}Br$ reacted with arenes in the presence of aluminum chloride. The arenes used were benzene, mesitylene, and hexamethylbenzene. Triphenyl-phosphine attacked a terminal position of the allyl ligand to form $(\eta^{6}-An)Fe(CO)(\eta^{2}-CH_{2}=CHCH_{2}PPh_{3}^{+}$, whereas sodium borohydride reduced the benzene ring to a cyclohexadienyl ligand³⁸⁹.

156

The most common sort of η^6 -arene complex is the widespread family of (arene)(cyclopentadienyl)iron compounds, most commonly encountered as the closed-shell monocations. Examples bearing the 1,2,4-tris(trimethylsilyl)cyclopentadienyl ligand have been prepared directly from Li⁺ C₅H₂(SiMe₃)₃⁻ by consecutive reaction with ferrous chloride, then aluminum chloride and arene³⁹⁰. Standard syntheses of several CpFeAn⁺ and Cp^{*}FeAn⁺ cations, with An a polycyclic aromatic such as phenanthrene, pyrene, triphenylene, perylene and others, have been reproduced or improved. Omission of solvent was found to result in improved yields in some cases³⁹¹.

However, reaction of Fp^*Br with hexaethylbenzene in the presence of aluminum chloride gave only the pentaethylbenzene cation, $\text{Cp}^*\text{Fe}(\text{C}_6\text{Et}_5\text{H})^+$. The yield was 28% when the reaction was carried out at 80°. At 200°, further dealkylation resulted in formation of tri- and tetraethylbenzene complexes as well. $\text{CpFe}(\text{C}_6\text{Et}_6)^+$ and $\text{Cp}^*\text{Fe}(\text{C}_6\text{Me}_6)^+$ could be prepared at moderate temperatures, but higher reaction temperatures here too led to dealkylation³⁹². The crystal structure of $\text{Cp}^*\text{Fe}(\text{C}_6\text{Et}_5\text{H})^+$ PF6⁻ showed all five ethyl groups distal relative to the Cp^{*}Fe group³⁹³. $\text{CpFe}(\text{C}_6\text{Et})^+$ BPh4⁻ also showed five distal ethyl groups in the crystal, although the PF6⁻ salt had earlier shown four. Clearly, small packing effects can lead to qualitative differences in these sterically crowded ligands³⁹⁴.

A borole complex, $(\eta^5-C_4H_4BPh)Fe(\eta^6-C_6H_6)$, isoelectronic to $CpFe(C_6H_6)^+$, has been prepared by exhaustive photolysis of the (borole)Fe(CO)₃ complex in benzene³⁰¹.

A mixed-valence salt, $[CpFe(\eta^6-tetralin)^+]_3 Fe(SCN)_6^{3-}$ was isolated in the course of treating $CpFe(\eta^6-tetralin)^+ PF_6^-$ with thiocyanate³⁹⁵.

Haptotropic isomerization (Eq. 18) of $CpFe(\eta^6-fluorenyl)$ to dibenzoferrocene occurred at $80-90^{\circ}$. Dibenzoferrocene also resulted in 15% yield when $CpFe(\eta^6-fluorene)^+$ was reduced with sodium amalgam³⁹⁶, and when $CpFe(C_6H_6)$ was treated with fluorenyl anion, followed by air oxidation³⁹⁷. The methyl groups of $CpFe-(C_6Me_6)^+$ were deprotonated and alkylated by treatment with KOH and alkyl iodides RI, resulting in formation of $CpFe[C_6(CH_2R)_6]^+$ [R = ethyl, pentyl, $(CH_2)_6OMe]$, described as "tentacled iron sandwiches³⁹⁸. Substitution at all four benzylic positions of CpFe(tetralin)⁺ was achieved by treatment with excess potassium \pm -butoxide and reactive organic halides, to form CpFe(C₁₀H₈R₄)⁺ [R = allyl, benzyl, methyl]. By varying the conditions, it was possible to obtain mono- and tri-benzylated compounds. Isolation of the free alkylated ligands was achieved by pyrolytic sublimation³⁹⁹.

Nucleophilic attack on the arene ring of CpFeAn⁺ cations constitutes a principal source of their synthetic utility, and several studies and applications of this reaction have appeared. A kinetic study of the reaction of CpFe(PhCl)⁺ with piperidine in acetone showed that the rate-determining step was the piperidineinduced decomposition of the initial o-complex⁴⁰⁰. Attack of amine nucleophiles on CpFe⁺ complexes of the three chloronitrobenzenes gave mixed results. Aniline displaced the nitro group in all cases. Butylamine or pyrrolidine displaced chloride from the ortho isomer, but gave mixtures from the meta and para, with chloride displacement predominating from meta and nitrite displacement from para⁴⁰¹. Excess butylamine gave monosubstitution from all three isomers of $CpFe(C_6H_4Cl_2)^+$, but addition of acetic acid allowed disubstitution. Excess pyrrolidine gave disubstitution in all cases. These results supported the proposal that the deprotonation of primary amine adducts to form CpFe(η^5 -ClC₆H₄=NR) was responsible for the lack of reactivity of the remaining chloro substituent402.

Reaction of CpFe($m-C_6H_4Cl_2$) with substituted phenoxides (protected tyrosines) proceeded sequentially, allowing preparation of complexed diaryl ethers or triaryl diethers⁴⁰³. In DMF solution, K⁺ CHE₂⁻ and related nucleophiles cleanly displaced chloride from CpFe($\underline{o}-C_6H_4ClMe$)⁺. With the CpFe⁺ complex of 2,6dichlorotoluene, the stabilized carbanions and methylamine displaced one chloride, whereas less hindered or stronger nucleophiles (MeCOCH₂S⁻, MeO⁻) displaced both⁴⁰⁴. Reactions of alkylmalonates RCE₂⁻ with chlorobenzene, dichlorobenzene, and chlorotoluene complexes under different conditions also led in most cases to clean chloride displacement. Use of excess nucleophile allowed displacement of both chlorides from <u>meta</u> and <u>para-</u> CpFe(C₆H₄Cl₂)⁺ 405.

In some cases, nucleophiles attack the coordinated arene ring at sites where there is no displaceable group, giving cyclohexadienyl complexes. The tetralin complex $CpFe[C_6H_4(CH_2)_4]^+$ added hydride and carbanion nucleophiles with little regioselectivity, giving mixtures; however, the analogs having four substituents on the benzylic positions showed complete selectivity for adding nucleophiles to the unhindered β -positions³⁹⁹. Reaction of $CpFe(C_{c}H_{5}C1)^{+}$ with NaCN in DMF (Eq. 19) gave both displacement

and addition, and the net outcome depended upon the method of workup. Addition of aqueous NH_4PF_6 gave only the benzonitrile complex, whereas oxidation with DDQ [2,3-dichloro-5,6-dicyanol,4-benzoquinone] gave a mixture of <u>o</u>-chlorobenzonitrile and phthalonitrile. Analogous results were obtained from <u>ortho-</u> substituted chlorobenzenes and 2,6-dichlorotoluene complexes⁴⁰⁶ and from dichlorobenzene complexes⁴⁰².

In an application of these methods to synthesis of an anticholesterol agent, $CpFe(\underline{p}-C_6H_4Cl_2)^+$ was treated with the carbanion from deprotonation of 3-ethoxy-6-methylpyridazine N-oxide to form an adduct; oxidative decomplexation gave the 2,5-dichlorobenzylated heterocycle⁴⁰⁷. $CpFe(\underline{o}-C_6H_4Cl_2)^+$ was converted to mono- and di-substituted cinnolines by means of 3- or 4-step syntheses involving enolate displacements and hydrazine attack with ring closure⁴⁰⁸. Applications of the same <u>o</u>-dichlorobenzene complex to syntheses of several heterocyclic skeletons found in biologically active materials have been described⁴⁰⁹.

Liberation of the arene from CpFeAr⁺ complexes is a necessary final step in a synthetic sequence. Photolysis of the phenoxazine and phenothiazine complexes in methanol, THF, or DMSO has been found to generate the free heterocycles with a quantum yield of 1.0, and has been recommended over the traditional pyrolytic sublimation as the method of choice for liberating arenes⁴¹⁰. Flash photochemical studies of CpFeAn⁺ Cl⁻ on the 10^{-3} to 10^{-6} sec time scale have been carried out, implicating an intermediate thought to be AnFeCl⁺. The final products were free arene and ferrocene⁴¹¹. Photolysis in the presence of benzonitrile cleanly produced the free arene and CpFe(NCPh)₃⁺. Two intermediates were detected by time-resolved laser spectroscopy: one, formed from the ion pair, was identified as CpFe(η^4 -An)X⁺, and the other, formed from the free cation, was the unsaturated CpFe(η^4 -An)⁴¹².

Photolysis of $CpFe(C_6H_6)^+$ in the presence of excess cyclooctatetraene produced $CpFe(\eta^6-C_8H_8)^+$ in high yield. An X-

ray structure showed the uncoordinated double bond of the cyclooctatetraene ligand folded away from the plane of the coordinated C_6 unit⁴¹³.

Photolysis of CpFeAn⁺ Ph₃BR⁻ salts in THF resulted in electron transfer, then rapid cleavage of the Ph₃B-R bond to form the free radical R[•] ⁴¹⁴. Visible irradiation of CpFeAn⁺ in polar solvents was shown by spin trapping to produce Cp[•] radicals. The excited state of the cations could be quenched by redox quenchers such as methylviologen or by hexamethyl Dewar benzene⁴¹⁵. The photochemical properties of CpFeAn⁺ have led to patents suggesting various practical uses of these materials: as photochemical initiators for cationic polymerization⁴¹⁶, as components in photopolymerizable mixtures for coatings, printing inks and the like⁴¹⁷, and for photoresists^{418,419}.

CpFeAn⁺ undergo chemical reduction as well as photochemical, and the properties of the resulting 19-electron radicals draw continuing interest. Extended Hückel and SCF-X_A calculations on CpFeAn complexes having polycyclic aromatic ligands have been carried out. Both gave good agreement with experimental spin densities, especially the X_A calculations. The 19-electron radicals were produced from the cations either electrochemically or by reduction with LiAlH₄ at low temperature³⁹¹. Carboranylsubstituted compounds CpFe(C₆H₅-R) [R = m- or p-carboranyl groupl have been prepared similarly and studied by ESR spectroscopy⁴²⁰. Electrochemical studies of (C₆H₆)Fe(η^{5} -Et₂C₂B₄H₄) showed a reversible one-electron oxidation⁴²¹.

Electroreduction of CpFe(PhCOPh)⁺ and related compounds with carbonyl groups on the arene ring cleanly led to liberation of the free arenes in yields of 85% or better, without reduction of the carbonyl substituents⁴²². $CpFe(C_6H_6)$ reacted with trimethylphosphine in THF solution to form CpFe(PMe₃)₂H; in the presence of NaPF₆, however, the products were $CpFe(PMe_3)_3^+$ and $(Me_3P)_3FeH^ (\eta^2 - CH_2 - PMe_2)^{423}$. A low temperature spectroscopic study of the reaction of CpFeAn with phosphines and phosphites indicated a fast equilibration of the η^6 19-electron species with a more reactive η^4 17-electron species, which was readily attacked by the phosphorus nucleophile. The toluene complex was 400 times more reactive than the hexamethylbenzene complex⁴²⁴. The 19electron complexes CpFeAn reduced CO_2 to 1/2 $[CO_3^{2-} + CO]$, but in the presence of PMe3 and NaPF6, the electron-rich species CpFe- $(PMe_3)_3$ formed and was converted to $CpFe(PMe_3)_3^+$ and CpFe- $(PMe_2)_2(CO) + 425$.

The binuclear complexes $CpFe(C_5H_4-C_5H_4)FeAn^+$ were prepared from biferrocene and the arene [benzene or hexamethylbenzene]. Cyclic voltammetry at -35° in DMF showed four reversibly formed oxidation states. The 35-electron dications were stable, and showed localized, valence-trapped behavior, as did the neutral 37-electron species⁴²⁶. Cyclic voltammetric studies of bis-(CpFe⁺) complexes of dibenzo-1,4-dioxin and related heterocycles showed two one-electron reduction steps whose small separation indicated moderate through-space interaction of the two FeCp centers. At slower scan rates, loss of a solvated CpFe(I) group could be observed; this formed ferrocene or, in the presence of CO, Fp_2^{423} . The symmetrical binuclear complexes AnFe(C₅H₄- C_5H_A)FeAn²⁺ (An = benzene, toluene, mesitylene, hexamethylbenzene, hexaethylbenzenel showed three reversible reduction waves, whose chemical reversioni villidiarean in more in whose groups on the arenes 428 . These dications could be reduced to 37electron monocations by use of sodium amaigam, LiAlHA, or CpFe-The bis(hexamethylbenzene) monocation was isolable at $(C_6 Me_6)$. room temperature. Mössbauer spectroscopy showed delocalized valences in the 37-electron species. Further reduction with sodium amalgam gave the 38-electron diradicals, which were revealed by ESR to be localized iron-centered biradicals with comparatively free rotation about the central bond⁴²⁹. Effects of external magnetic fields on the Mössbauer spectra of the 36-, 37- and 38-electron species have been determined 430. Cyclic voltammetric study of $(\eta^5 - Et_2C_2B_4H_4)Fe(Ph-Ph)Fe(\eta^5 - Et_2C_2B_4H_4)$ showed two reversible oxidation waves⁴²¹.

Reaction of the 19-electron species CpFeAn [An = benzene, hexamethylbenzene] with organic halides RX produced CpFeAn⁺ X⁻ salts, AnFe(η^{4} -<u>exo</u>-5-R-C₅H₅), and CpFe(η^{5} -<u>exo</u>-6-R-C₆H₆). The (chloromethyl) cyclopenrablene compounds underwent ring expansion (Eq. 20) at room temperature to form AnFe(η^{5} -C₆H₇)⁺ Cl⁻. The isomeric (chloromethyl) cyclohexadienyl compounds similarly solvolyzed at 40^o in methanol solution to form CpFe(η^{6} -cycloheptatriene)⁺ Cl⁻ 431.

Synthesis of several An_2Fe^{2+} compounds has been reexamined and, in some cases, improved. Reaction with one equivalent of NaBH₄ formed AnFe(η^{5-} cyclohexadienyl)⁺ cations. Reactions with C and O nucleophiles resulted in electron transfer rather than covalency formation. Reaction of bis(p-xylene)iron²⁺ with two equivalents of phenyl-lithium at -80° , however, gave **60**, albeit in low yield⁴³². The stabilities of a series of An_2Fe^{2+} complexes in solution were found to depend on solvent basicity and extent of alkyl substitution on the rings. ¹H and ¹³C NMR data and ⁵⁷Fe Mössbauer data were reported and analyzed in terms of charge densities and orbital populations⁴³³. Use of An_2Fe^{2+} dications in donor-acceptor solids with hexacyanotrimethylenemethyl dianion, $(NC)_2C=C[C(CN)_2^{-1}]_2$, has been studied. Crystal structures of the mesitylene and hexamethylbenzene salts showed zigzag linear chains of alternating dications and dianions, with close contacts. The crystal structure of the 19-electron $(C_6Me_6)_2Fe^+$ PF₆⁻ showed little structural change from the 18electron dication, consistent with the facile charge-transfer interactions shown by these species⁴³⁴.

Reaction of An_2Fe^{2+} with trimethylaluminum in methylene chloride resulted in chloromethylation, to form **61** in the hexamethylbenzene case⁴³⁵. Ring expansions analogous to Eq. 20 were not yet reported.

Hydride abstractions from $(C_6H_6)Fe(\eta^4-C_6H_7R)$ [R = benzyl, 2dithiolanyl, CHE_2 , CN] were investigated. At low temperature, reaction with Ph_3C^+ proceeded by electron transfer, followed by slow hydrogen transfer at -50° in the cases R = benzyl and dithiolanyl, which gave the desired cations $(C_6H_6)Fe(\eta^5-C_6H_6R)^+$. At higher temperatures or with R = CHE_2 even at -50° , loss of R^{*} led to formation of $(C_6H_6)Fe(C_6H_7)^+$. Addition of CN^- to $(C_6H_6)Fe(\eta^5-C_6H_6R)Fe(\eta^5-C_6H_6CH_2Ph)^+$ produced an adduct analogous to 60^{436} .

9. BIMETALLIC COMPOUNDS

a. Diiron Compounds. Derivatives of Fe2(CO)9

 $(F_3CCN)_3Fe(\mu-NCCF_3)_3Fe(NCCF_3)_3$, the trifluoromethylisocyanide analog of Fe₂(CO)₉, formed upon spontaneous decomposition of Fe(NCCF₃)₅ at room temperature¹²¹. Visible irradiation of solutions containing Fe₂(CO)₉ and CpW(CO)₃[SC(S)NMe₂] resulted in ligand transfer to form Fe[SC(S)NMe₂]₂⁴³⁷. As previously shown in Eq. 8, Fe₂(CO)₉ served as an oxidizing agent toward some reactive benzylic and allylic alcohols, being reduced to H₂Fe-(CO)₄ in the process¹⁵⁴. The opposite reaction, reduction of an aldehyde group to a primary alcohol, occurred when RCHO [R = 2norbornyl, 3-methyl-2-norbornyl] was refluxed in dibutyl ether with Fe₂(CO)₉. In refluxing hexane, the ester RCH₂OC(O)R formed, via a novel iron carbonyl-catalyzed Cannizzaro reaction⁴³⁸.

 ${\rm Tl}_2{\rm Fe}_6({\rm CO})_{24}^{2^-}$ has been prepared by oxidation of ${\rm Tl}_2{\rm Fe}_4$ - $({\rm CO})_{16}^{2^-}$, both as tetraethylammonium salts. The crystal structure of the PPN salt showed the expected structure, **62**. The new ${\rm Tl}_2{\rm Fe}_6$ diamion is a member of a homologous series which includes the already-described ${\rm Tl}_4{\rm Fe}_8$ and ${\rm Tl}_6{\rm Fe}_{10}$ diamions⁴³⁹.

The methylene-bridged complex (OC) $_{4}$ Fe(μ -CH₂)Fe(CO) $_{4}$ was obtained in high yield from reaction of CH₂X₂ with Fe(CO)₅ in a phase-transfer system [1 M aq. NaOH, Bu₄N⁺ HSO₄⁻]⁸⁵. Carbonylation of the methylene complex in the presence of an alcohol, ROH, produced mainly CH₃CO₂R. Byproducts included 14, and (OC) $_{4}$ Fe(η^{2} -CH₂C=O) was proposed as an intermediate. Reaction of the methylene complex and CO in the presence of norbornene led to formation of an organic trapping product of the ketene intermediate⁹⁴. The silylene complex (OC) $_{4}$ Fe(μ -SiMe₂)Fe(CO) $_{4}$ served as a source of iron carbonyl groups in reaction with allyl halides to form (η^{3} -allyl)Fe(CO)₃X. Reaction with elemental sulfur produced S₂Fe₂(CO)₆ and S₂Fe₃(CO) $_{9}^{134}$.

 $(OC)_{3}Fe(\mu-GeMe_{2})_{3}Fe(CO)_{3}$ was among the products of prolonged irradiation of 15 [n = 1]⁹⁶. Thermal reaction of cyclo[Fe(CO)_4-(GeMeH)]_2 with Co₂(CO)_8 produced 63, which showed normal Ge-Fe bond lengths (2.45 Å) and a consequentially elongated Fe-Fe distance (2.693 Å)⁹⁷. Reactions of GeH₄ or Ge₂H₆ with Fe₂(CO)₉ in refluxing hexane produced, along with the known (OC)₈Fe₂(μ_4 -Ge)Fe₂(CO)₈, the clusters Ge₂Fe₆(CO)₂₃, 64, and Ge₂Fe₇(CO)₂₆. Analogous tin clusters were also produced from SnH₄⁴⁴⁰.

Mild oxidation of $ClSb[Fe(CO)_4]_3^{2-}$ resulted in formation of $(OC)_8Fe_2(\mu_4-Sb)Fe_2(CO)_6(\mu_4-Sb)Fe_2(CO)_8$, a structure analogous to 64 save for the bridging CO in the latter¹⁰⁵. Similarly, oxidation of $Sb[Fe(CO)_4]_4^{3-}$ produced $(OC)_8Fe_2(\mu_4-Sb)[Fe(CO)_4]_2^{-}$, 65, in which the four-coordinate antimony atom formed part of a $SbFe_2$ ring, and also coordinated two isolated $Fe(CO)_4^-$ units⁴⁴¹. Reaction of $Fe_2(CO)_8^{2-}$ with $SbCl_3$ or $BiCl_3$ produced 66 [Z-X = $SbCl^-$ or $BiCl^-$], which formed 66 [Z-X = $Sb->Cr(CO)_5$ or $Bi->Cr(CO)_5$] upon treatment with $(THF)Cr(CO)_5$. Methylation of 66 [Z-X = $BiCl^-$] produced 18, whereas refluxing it in acetonitrile yielded the

previously characterized $Bi_2Fe_4(CO)_{13}^{2-}$. Heating the antimony analog in acetonitrile produced $Sb_2Fe_5(CO)_{17}^{2-106}$.

The bridging phosphide salt $\text{Et}_4 N^+$ (OC)₃Fe(µ-CO)(µ-PPh₂)Fe-(CO)₃⁻ was obtained in low yield when the HFe(CO)₃PPh₃⁻ salt was treated with hot ethanol⁶⁷. The ESR spectrum of the neutral 33electron radical Fe₂(CO)₇(µ-PPh₂) trapped in a single crystal of FeCo(CO)₇(u-PPh₂) has been determined. Spin density was confined to the pentacoordinated Fe nucleus and two of its CO ligands, a result which was consistent with extended Hückel calculations⁴⁴².

Spin-lattice relaxation times and nuclear Overhauser enhancement factors in the 31 P NMR spectra of several bi- and trinuclear complexes containing phosphine and phosphido groups have been measured. Included among those studied was (OC) $_3$ Fe(μ -PPh_2) (μ_2 , η^2 -C==CCMe_3)Fe(CO) $_3^{443}$. This compound and other similar phosphido-bridged ones were also studied in the solid state by CP/MAS 31 P NMR spectroscopy. There was a good correlation between the shielding tensor components and the M-P-M bond angle⁴⁴⁴.

Reaction of azoalkanes R-N=N-R [R = Et, Pr] with "Grevels' reagent," bis(cyclooctene)Fe(CO)₃, or with Fe₃(CO)₁₂ produced (OC)₃Fe($\mu,\eta^2N_2R_2$)Fe(CO)₃ and tri-iron complexes⁴⁴⁶. A structurally similar azo complex, **67**, was obtained (in very low yield) from the diazocyclopropene [C₃(t-Bu)₃]C(=N₂)SiMe₃ and diiron nonacarbonyl₉¹⁷⁰.

Irradiation of $(OC)_3 Fe(\mu-DPPM)(\mu-CO)Fe(CO)_3$ and $Me_3C-C \implies P$ resulted in insertion of the phosphanitrile into the molecule as a four-electron ligand, forming **68**. The fluorophosphine-bridged compound $(OC)_2 Fe(\mu-CO)(\mu-F_2 PNMePF_2)_2 Fe(CO)_2$ served as a catalyst in photoassisted hydrosilylation reactions with Et_3SiH. Quenching by added ligands and the wavelength dependence indicated the necessity of carbonyl dissociation⁴⁴⁷. Reaction of $(OC)_3 Fe$ - $[\mu-R_2NPC(=0)PNR_2]Fe(CO)_3$ [R = isopropyl] with dimethylsulfoxonium methylide resulted in insertion of methylene groups into both P-CO bonds. In contrast, triphenylphosphonium methylide attacked the carbonyl group, to form the ylide product 69^{448} .

Reaction of 4-R-1,2,3-thiadiazoles with $Fe_2(CO)_9$ in the presence of ethanol, which functioned as a labile ligand and as a reducing agent, produced 70^{79} . Insertion of a $Fe_2(CO)_6$ group into the C-S bond was the net result when $PhCH_2SC(=S)N=C(NMe_2)-CO_2Me$ reacted with $Fe_2(CO)_9$, forming $(OC)_3Fe(\mu-SCH_2Ph)(\mu-C(=S)N=C(NMe_2)CO_2Me)Fe(CO)_3$. This result contrasted with formation of 22 from the thiobenzoyl analog¹³¹.

A two-step sequence comprising reaction of $Fe_3(CO)_{12}$ with thiols, RSH, and triethylamine, to form the intermediate Et_3NH^+ $Fe_2(CO)_6(\mu-CO)(\mu-SR)^-$, then reaction with PhPCl₂, produced **71** [Y = SR, Z = PhPCl⁴⁴⁹. Analogous types of products resulted when $Fe_3(CO)_9(\mu-CO)(\mu_3-PR)$ reacted with R'SeSeR'; about 30% binuclear products **71** [Y = R'Se, Z = PR(SeR')] were obtained, along with trinuclear products. R'TeTeR' reacted similarly⁴⁵⁰.

Salts of $(ON)_2 Fe(\mu-S-SO_3^-)Fe(NO)_2^{2-}$ resulted from reaction of ferrous salts, thiosulfate, and NO or NO₂⁻. The crystal structure of the PPN⁺ salt showed a planar S_2Fe_2 ring with trans sulfonate groups. The μ -thiosulfate groups were readily displaced by thiols to form $(ON)_2Fe(\mu-SR)_2Fe(NO)_2^{451}$. Reaction of Me_3CS^- with $(\mu-S_2-Fe_2(CO)_6$ produced $(OC)_3Fe(\mu-S)(\mu-S-SCMe_3)$ - $Fe(CO)_3^-$, whereas less bulky thiolates reacted further to form $Fe_4S_4(CO)_{12}^{2-}$, having two $[(\mu-S)_2Ft_2]$ units linked by a S-S bond⁴⁵².

The previously mentioned anions $(OC)_3Fe(\mu-CO)(\mu-SR)Fe(CO)_3^$ were useful precursors to species having organic bridging ligands. With the hard electrophile, Et_3O^+ , they underwent Oethylation at the bridging CO ligand, giving μ -carbyne products. With organic halides capable of forming bridging groups [acy] chlorides, Me₂NC(=S)Cl, allyl chloride, propargylic halides), they formed $(OC)_{2}Fe(\mu-SR)(\mu-organyl)Fe(CO)_{2}$. Crystal structures of the μ -allyl and the fluxional μ -allenyl [72] products were reported⁴⁵³. Reaction of the $(\mu$ -CO) $(\mu$ -SR)Fe₂(CO)₆ anions with carbon disulfide gave $Ft[\mu-S=C(-S^{-1})(\mu-SR)Ft$ anions, which showed strong nucleophilicity of the exocyclic sulfur. μ -S and μ -SO₂ products resulted from reactions with sulfur and with sulfur dioxide, respectively 454. In an independent report, direct formation of μ -aroyl (μ -SCMe₃)(μ -ArCO)Fe₂(CO)₅ complexes from $Fe_3(CO)_{12}$, Me₃CSH, Et₃N, and aroyl chloride was reported⁴⁵⁵. A crystal structure of $(\mu-RCO)(\mu-SEt)Fe_2(CO)_6$ [R = CH₂=C(Me)-] was reported⁴⁵⁶. With ArCOCH=CHCl, µ-alkenyl complexes formed 457 , one of which, Ft(µ-SPh)(µ-CH=CHC(=O)C_cH₄Me)Ft, was the subject of a crystal structure⁴⁵⁸.

When $(\mu-CO)(\mu-SCMe_3)Fe_2(CO)_6^-$ was treated with Hg(C= $aCCH_2OMe)_2$ (Eq. 21), a μ -carbyne product formed. Reaction with aqueous acid resulted in hydrolysis of the enol ether, while reaction with electron-deficient alkynes led to insertion reactions, which formed more complex cyclic products⁴⁵⁹. In what is probably closely related chemistry, a one-pot reaction of Fe₂-(CO)₉ or Fe₃(CO)₁₂ with Me₃CSH and HC=CPh has been reported to give the products shown in Eq. 22, all characterized by crystal structures. The first two products were also formed in the reaction of Fe₃(CO)₉(μ -Cl)(μ_3 -SCMe₃) with HC=CPh⁴⁶⁰. The pro-

ducts 74 [R = CF_3 , CO_2Et] formed (along with 21 in the trifluoromethyl case) in photochemical reaction of $Fe(CO)_5$ with the thioketenes¹²⁸.

The very common bis(thiolate) complexes, 71 [Y = Z = SR; R =

H, Me, Et, Ph], resulted when mononuclear thiolate complexes $RSFe(CO)_4^-$ were protonated. Intermediate thiol complexes could be observed in some cases, but these decomposed above -40° to $Ft(\mu-SR)_2Ft$, molecular hydrogen, and carbon monoxide¹⁰⁷. Monoand bis-triphenylphosphine substitution products were obtained by refluxing the reagents together for appropriate lengths of time⁴⁶¹. (Ph₃P)Fe(CO)₂(μ -SEt)₂Fe(CO)₂(PPh₃) has been used as a catalyst for substitution of phosphites into Fe₃(CO)₁₂⁴⁶². The crystal structures of eight Ft(μ -SR)(μ -SR')Ft complexes have been compared in detail; little variation in Fe-Fe and Fe-S distances was apparent⁴⁶³. The structure of 73 was also reported⁴⁶³.

The kinetics of replacement of a CO by another ligand in the thioacyl complexes $(OC)_3 Fe[\mu, \eta^2 - C(OR)S](\mu - SR')Fe(CO)_3$ [R = adamantylmethyl, mesityl; R' = methyl, cyanomethyll has been studied. Selective substitution occurs at the C-bound carbon, and initial decoordination of the SR' group from there was implicated in the mechanism⁴⁶⁴. Under thermal conditions, the new ligand [Me₃C-NC] principally entered <u>cis</u> to the Fe-thioacyl group; with electron-transfer catalysis, it was found in the <u>trans</u> position, which was thermodynamically favored. A second ligand attacked the S-bound carbon in either case⁴⁶⁵. Crystal structures of mono- and bis-isonitrile substitution products were reported⁴⁶⁶.

Compound 75 [Y = adamantylmethoxy, L = CO] has been obtained as a byproduct in the synthesis of $(OC)_3Fe[\mu,\eta^2-C(OR)S](\mu-SMe)Fe(CO)_3$ from Fe₂(CO)₉ and ROC(=S)SMe, and is thought to be an intermediate in the formation of the more stable thioacyl product. Reaction of 75 [L = CO] with trimethyl phosphite gave only 75 [L = P(OMe)_3] (crystal structure). Curiously, when the latter rearranged to the thioacyl, either thermally or with electrontransfer catalysis, the thioacyl group and the phosphite were bound to the same carbon; migration of the carbon during rearrangement was inferred⁴⁶⁷. Further examples of 75 [Y = CH₂=CH-S, L = CO, P(OMe)_3] were obtained by reaction of ethylene trithiocarbonate complexes 76 with strong bases, followed by S-methylation. Again, heating caused conversion to the thioacyl complexes $(OC)_3Fe(\mu-SMe)[\mu,\eta^2-S-C(SCH=CH_2)]Fe(CO)_2L$, with migration of the thioacyl carbon⁴⁶⁸. Carbene complexes (OC) $_{3}Fe(\mu-SPh)_{2}Fe(CO)_{2}[C(OEt)R]$ [R = Ph, Bu] underwent aminolysis with ammonia or dimethylamine to form aminocarbene complexes. Displacement of the carbene ligand by the amine occurred competitively. The crystal structure of (OC) $_{3}Fe(\mu-SPh)_{2}Fe(CO)_{2}[C(NMe_{2})Ph]$ showed the carbene ligand trans to the Fe-Fe bond, with a C=Fe bond distance of 1.97 Å and a C==N distance of 1.32 Å⁴⁶⁹. Reaction of the ethoxycarbene complex with ligands trimethyl phosphite and <u>t</u>-butyl isonitrile resulted in displacement of both a CO (from the tricarbonyliron group) and the carbene ligand. With LiPPh₂, the ethoxycarbene complex reacted to form Fe₂(μ -SPh)(μ -PPh₂)(CO)₅(PPh₃) and Fe₂(μ -SPh)(μ -PPh₂)(CO)₄(PPh₃)₂, the latter being verified by a crystal structure⁴⁷⁰.

Irradiation of 1,3,5-trithiane with $Fe(CO)_5$ in THF gave the bridged compound 77 (crystal structure), and 1,3-dithiane gave a similar product with a trimethylene bridge joining the two coordinated sulfur atoms. $(OC)_3Fe(\mu-SCH_2S)Fe(CO)_3$ was a byproduct in each case. With $CH_2(SMe)_2$, $(OC)_3Fe(\mu-SMe)(\mu-CH_2SMe)Fe(CO)_3$ was formed⁴⁷¹. An unusual stable free-radical complex, 78, resulted from reaction of 4-phenyl-1,2,3,5-dithiadiazole with iron carbonyls. The Fe-Fe, Fe-S, and S^{**}S distances in the crystal structure of 78 were unexceptional. Extended Hückel MO calculations indicated that the unpaired electron was housed in an antibonding MO extending over the CN_2S_2 system⁴⁷².

The $(OC)_{3}Fe(\mu-SPh)(\mu-S)Fe(CO)_{3}^{-}$ anion attacked the CpMn(CO)₂^A ³CPh⁺ cation at the carbyne carbon, forming $(OC)_{3}Fe(\mu-SPh)[\mu-SC-(Ph)=Mn(CO)_{2}Cp]Fe(CO)_{3}$, having a manganese-carbene linkage on the side chain. Similarly formed from $S_{2}Fe_{2}(CO)_{6}^{2-}$ were bis $(\mu$ -thiocarbene) complexes of manganese and rhenium⁴⁷³. The alkynyl groups in $Fe_{2}(CO)_{6}(\mu-SC\equiv CAr)(\mu-SR)$ readily underwent complexation by $Co_{2}(CO)_{6}$ groups⁴⁷⁴. An X-ray structure of $(OC)_{3}Fe(\mu-SPr)[\mu-SC_{2}Co_{2}(CO)_{6}C_{6}H_{4}Me]Fe(CO)_{3}$ showed the S-propyl group equatorial and the S-C₂Co₂ cluster axial with respect to the $S_{2}Fe_{2}$ cluster⁴⁷⁵.

The $Fe_2S_2(CO)_6$ cluster is itself capable of serving as a ligand toward other transition metals, as in **79**, and several examples of new compounds in which it plays that role have been described. Reactions of the neutral $(\mu-S_2)Fe_2(CO)_6$ with various

168

compounds of titanium, iron, cobalt, nickel, palladium, and platinum have been studied. In all cases, an unsaturated metal fragment inserted into the S-S bond of the Fe₂S₂ cluster to form **79**; in some cases Fe-M bonds also formed to satisfy the needs of valency. The crystal structures of **79** [ML_n = CoCp^{*} and Cp^{*}Co(μ -CO)₂CoCp^{*}] were determined. In the latter, the Fe^{**}Fe distance was 3.35 Å, suggesting little residual interaction⁴⁷⁶.

A supercluster, **80**, resulted from reaction of $Cp_2Cr_2-(SCMe_3)_3S$ with $S_2Fe_3(CO)_9$. Similar compounds with cobalt and rhodium as central ions were also prepared⁴⁷⁷. Reactions of $M(PPh_3)_4$ [M = Ni, Pd, and Pt] with $E_2Fe_3(CO)_9$ [E = S, Se, and Te], to form **79** [ML_n = $M(PPh_3)_2$] have been explored in detail. Competing mechanisms were indicated, with formation of **79**-type products particularly favored for the larger atoms in each series, especially Te, Pd, and Pt^{478,479}. Te₂Fe₂(CO)₆ readily added unsaturated triruthenium and triosmium fragments to form $(OC)_6Fe_2(u-Te_2M_3(CO)_{11}^{479}$. A crystal structure of the triruthenium compound may be represented as **81**⁴⁸⁰. Infrared comparison suggested a similar structure for the osmium analog. Heating or irradiating either compound resulted in conversion to $(\mu_3-Te)_2M_3^{-1}$ (CO)

Phenylacetylene added thermally to the E-E bond of $(OC)_3$ Fe- $(\mu_2, \eta^2 - E_2)$ Fe $(CO)_3$, to form 82^{482} . The analog with a saturated ethanediyl bridge between the tellurium atoms has also been reported⁴⁷⁹.

A group of chemists from Amsterdam has published a series of seven full papers⁴⁸³⁻⁴⁸⁹ on the reactions of bimetallic diazadiene complexes, $[R-N=CH-CH=NR]FeM(CO)_6$ [R = isopropy], cyclohexyl; M = Fe, Rul, and their benzo analogs, with alkynes, especially methyl propynoate, dimethyl acetylenedicarboxylate, and (N,N-diethylamino)-1-propyne. The diazadiene coordinates to the FeM(CO)₆ groups in the starting materials as a six-electron ligand, using both nitrogen electron pairs and one pair of π electrons. This can readily be expanded to use of eight electrons upon expulsion of a CO ligand, and a panoply of possible products form by coordination of an alkyne, followed by insertion reactions. Much of this chemistry has been reviewed by the original authors⁴⁹⁰. A sense of the transformations involved in these reactions, which commonly occur at room temperature, can be gleaned from Scheme I, which shows intermediates and products in the reaction of $[Me_2CH-N=CH=N-CH=N-CHMe_2]Fe_2(CO)_6$ and $HC\equiv=CCO_2Me^{485}$ and Scheme II, involving the same diazadiene (and its ruthenium analogs) and $MeC\equiv=CNEt_2^{489}$. Several other systems were studied in depth, and numerous crystal structures were reported.

A series of ferracyclopentadienyl complexes, derivatives of $[\eta^{5}-C_{4}H_{4}Fe(CO)_{3}]Fe(CO)_{3}$ having diazadiene units replacing two carbonyl groups at alternate sites on either iron, have been studied by theoretical methods (Xa calculations) and photoelectron and Mössbauer spectra. It was concluded that replacement of two carbonyls by a diazadiene resulted in increased electron density on the iron, with consequent structural adjustments⁴⁹¹.

When isocyanates RNCX [R = Et, Ph; X = O, S] were allowed to react with $[\mu, \eta^2 - \text{MeCCNEt}_2]\text{Fe}_2(\text{CO})_7$, the result was insertion into a C-Fe bond and loss of CO to form a ferrapyrrolidinone ring, 83^{492} . An isomeric ferrapyrrolinone ring 84 was formed by reaction of $(\mu-\text{CH}_2)\text{Fe}_2(\text{CO})_8$ with phosphinimines Ph₃P=NPh and Bu₃P=N-CMe₃ under CO. Loss of CO from the ferrapyrrolinone gave a ferraazetine complex $[\eta^4 - \text{Fe}(\text{CO})_3 - \text{CH} - \text{CH} - \text{NR}]\text{Fe}(\text{CO})_3$. Protonation of 84 led reversibly to $(\text{OC})_4\text{Fe}[\mu_2, \eta^1 - \text{CH}(\text{CH} = \text{NHR})]\text{Fe}(\text{CO})_4^+$ 493. Another ferraheterocycle, 85, resulted as a minor product from reaction of Ph₂P-C=C-CMe₃ and HFe₃(CO)₁₁⁻ in refluxing ethyl acetate⁴⁹⁴.

A mixture of seven characterized products, five of them $Fe_2(CO)_6$ derivatives, formed in the reaction of $CH_2=CH-CH_2C=C-NEt_2$ with $Fe_3(CO)_{12}$. At 45° , the two products formed represented two common structural types: a ferrole complex, **86** [R_1 = allyl, R_2 = NEt₂] and a "flyover" complex, **87** [same R's], both resulting

from coupling of alkyne ligands. Under more vigorous conditions, these were accompanied by three isomeric Fe₂(CO)₆[C₅H₅NEt₂] com-

Scheme II. Reactions of M₂(CO)₆(*i*-Pr-DAB)[M₂ = Fe₂, FeRu, Ru₂] with MeC=CNEt₂ 489

plexes and two tri-iron products. The three isomers differ by hydrogen shifts within the ligand, resulting in three alternate ways of providing six electrons to the Fe₂(CO)₆ unit. All were characterized by X-ray crystallography⁴⁹⁵. Two similar products, (OC)₃Fe[μ , η^2 , η^3 -(EtO)HC=CHCHCRCRIFe(CO)₃ and (OC)₃Fe[μ , η^2 , η^3 -CH₂=CHC(OEt)CRCRIFe(CO)₃ resulted when various alkynes RC==CR [R = I%, %e, Si%e₃, CO₂%e, etc.{ underwent intertion reactions into (OC)₃Fe(μ -COEt)(μ -CH=CH₂)Fe(CO)₃. The former product type, which required hydrogen migration from the vinyl to the ethoxycarbene, formed to a greater extent when bulky R groups were involved⁴⁹⁶.

An exceptional degree of ligand coupling resulted in the reaction of CFBr₃ with $Fe(CO)_5$ to form inter alia the tetrafluorototic complex Bb $M_2 = M_2 = F)^{AQ7}$. The tetraethyl and tetraphenyl analogs and the "flyover" complex B7 $[R_1 = R_2 = Ph]$ have been studied by solid state ¹³C CP/MAS NMR spectroscopy ⁴⁹⁸. Equation 23 illustrates the formation of a novel ferrole complex in an ethylation reaction accompanied by a long-range proton rearrangement. The starting material in Eq. 23 was obtained as a byproduct of the synthesis of the ketenylidenetrighenylignosphorane complex $(DC)_4 FeC(CD)FPh_2^{A99}$.

The thermal stabilities of four binuclear complexes [e.g. $(OC)_{3}Fe[\mu,\eta^{2},\eta^{3}-C_{6}H_{4}CH_{2}N(CH_{2}Ph)]Fe(CO)_{3}]$ and a related Fe₃ complex, all derived from Schiff bases, have been examined, along with their mass spectra⁵⁰⁰. Reaction of the fused spiro[4.2]heptadiene with diiron nonacarbonyl produced, in addition to 48, the fulvene complex 88¹⁷⁴. An analogous structure, 89, may be suggested as an alternative to the structure originally proposed¹⁶³ for the Fe₂(CO)₇ complex formed along with 28. The revised structure receives strong support from the high-field resonance reported for the exocyclic carbon.

A crystal structure of $(\mu, \eta^3, \eta^3 - \text{tropone})_{A}$ synthesized along

with the $Fe(CO)_3$ complex by reaction of tropone with $Fe_2(CO)_9$ in ether, has been reported⁵⁰¹.

9b. Diiron Compounds. Derivatives of Cp₂Fe₂(CO)₄ [Fp₂]

A review of the photochemistry of Fp_2^{235} and some additional photochemical studies published during $1989^{236,237}$ were described in Section 7b of this review. A crystal structure of the radical anion, Fp_2^{-} , has been reported^{240,241}. Rotations of the cyclopentadienyl ligands in <u>cis</u>- and <u>trans</u>-Fp₂ in the solid state have been studied by NMR spectroscopy and by potential energy calculations. The results were compared with the anisotropic parameters observed in the X-ray crystallographic structures, which were found to convey information on the librations of the rings⁵⁰².

Reaction of the CO_2 adduct $FpCO_2^-$ with Fp'I afforded the symmetrical dimer Fp_2 , with only traces of the unsymmetrical $CpFe(CO) (\mu-CO)_2Fe(PPh_3)Cp [FpFp']$ formed. In contrast NaFp with Fp'I produced equal amounts of symmetrical and unsymmetrical dimers. $FpCO_2^-$ and $CpFe(CO) (NCMe)_2^+$ formed the mixed dimer $CpFe(CO) (\mu-CO)_2Fe(NCMe)Cp$, which disproportionated to Fp_2 at room temperature³⁰³.

Thermolysis of Fp_2 in a sealed tube at 300° produced ferrocene, biferrocenyl, CO, CO₂, cyclopentadiene, and elemental carbon and iron, whereas thermolysis in refluxing xylene produced mainly the tetramer (CpFeCO)₄⁵⁰³. Films obtained by chemical vapor deposition using Fp_2 as reagent were essentially iron containing small amounts of carbon and oxygen⁵⁰⁴. Fp₂ was used to catalyze ligand exchanges in CpRu(CO)₂I derivatives⁵⁰⁵.

The ring-linked Fp₂ derivative (OC) Fe[μ , η^5 , η^5 -C₅H₄CH(NMe₂)-CH(NMe₂)C₅H₄](μ -CO)₂Fe(CO), readily prepared from 6-dimethylaminopentafulvene, has been converted to a series of simpler ring-linked derivatives using straightforward synthetic manipulations⁵⁰⁶. The directly linked fulvalene complex (μ , η^5 , η^5 -1,3-R₂C₅H₂-1',3'-C₅R₂H₂)Fe₂(CO)₄ [R = CMe₃] was prepared by reaction of the dihydropentafulvalene with Fe(CO)₅ in refluxing methylcy-clohexane⁵⁰⁷. In contrast to the previous cases, IR showed no evidence of bridging carbonyl groups in the pentafulvalene complex.

The silane hydrogen of CpFe(CO)(μ -CO)(μ -SiHCMe₃)Fe(CO)Cp was replaced by halogens upon reaction with CCl₄, CHBr₃, or I₂; reaction of the chlorosilane with methyllithium gave the methylsilane. The bulkier groups led to formation of some <u>trans</u> isomers in equilibrium with the <u>cis</u>⁵⁰⁸.

Refluxing Fp₂ with ethanethiol in ether produced CpFe(CO)(μ -SEt)₂Fe(CO)Cp, whose crystal structure was determined²⁸⁸. CpFe-

(CO) (μ -DPPM)Fe(CO)Cp was oxidized by Me₂S-SMe⁺ to a paramagnetic cation; a more complex series of events [Eq. 24; L = {PhO}₃P] ensued with a less electron-rich diiron compound⁵⁰⁹. Two iso-

meric forms of $Cp_2Fe_2S_4$ have been prepared and characterized by X-ray diffraction. One showed two disulfide ligands, one perpendicular and one parallel to the Fe-Fe bond. The other had two η^1, η^2 -disulfide ligands. Reaction of the latter with hexafluoro-2-butyne resulted in insertion of the alkyne into S-S bonds to form hexafluorobutenedithiolate ligands⁵¹⁰.

Both <u>cis</u> and <u>trans</u> isomers of the bis(μ -phosphido) complex CpFe(CO)(μ -POCH₂CMe₂CH₂O)Fe(CO)Cp have been prepared, the ligands being dimethylphosphorinane rings. Formation of the phosphorolane analogs was accompanied by a small amount of the novel product **90**⁵¹¹.

Reaction of the phosphorus ylide $Ph_3P=CH_2$ with $[Cp'Fe(CO)_2]_2$ resulted in replacement of a bridging CO by CH_2 . Cp'Fe(CO)- $(PPh_3)COMe$ was also formed. The reaction of Fp_2 with phosphorus ylides proceeded differently, depending on the amount of butyllithium (used to form the ylide) present. Under different conditions, for example, products **91** and **92** formed from $Ph_3P=CHPh^{512}$.

DV-Xa calculations have been applied to Fp₂, its ringmethylated derivatives, and CpFe(CO) (μ -CO) (μ -CH₂)FeCp(CO), and the results compared with DV photoelectron spectroscopic data. Absence of a direct Fe-Fe bond in these compounds was asserted, based on the theoretical calculations. A localized INDO method was applied to calculations on CpFe(CD) (μ -CH₂) (μ -DPPM)FeCp⁵; the results indicated coordination of a Fe(1)-methyl C-H bond to Fe(2), and no Fe-Fe bond⁵¹⁴.

Reduction of CpFe(CO)(μ -CO)(μ -CMe)Fe(CO)Cp⁺ at a cathode or by cobaltocene led to unstable free radicals, which underwent disproportionation to μ -vinylidene and μ -ethylidene products⁵¹⁵. The vinylidene complex CpFe(CO)(μ -CO)(μ -C=CH₂)Fe(CO)Cp underwent protonation in the gas phase (as in solution) at the β -carbon, forming the μ -ethylidyne cation. The proton affinity of the vinylidene complex was measured as 970(10) kJ/mol⁵¹⁶. Collisionally activated μ -ethylidyne complex decomposed by loss of the three CO's, then acetylene and dihydrogen⁵¹⁶. In solution, it underwent condensation with p-tolualdehyde to form CpFe(CO)(μ -CO)(μ -C-CH=CHAr)Fe(CO)Cp⁺ in 92% yield. Several other aldehydes and ketones gave analogous condensation products. The initial isobutyraldehyde condensation product rearranged <u>in situ</u> to CpFe(CO)(μ -CO)(μ , η^1 , η^2 -CH=CH=CH=CM=2)Fe(CO)Cp⁺. Hydride abstraction by trityl cation from alkenylidene complexes CpFe(CO)(μ -CO)[μ -C=C(Me)CH₂R]Fe(CO)Cp favored removal from the CH₂ group for R = Me and from the methyl group for R = p-tolyl⁵¹⁷. Several alkenylidyne complexes (fluoroborate salts) were tested for nonlinear optical properties⁵¹⁸.

Cuprate reagents Li⁺ RCuCN⁻ attacked the bridging ketenyl group of CpFe(CO)(μ -CO)(μ -CHCO)Fe(CO)Cp⁺, resulting in formation of μ -CH-C(=O)R groups [R = Me, Pr, Ph], which showed low carbonyl stretching frequencies indicative of electron donation from the CFe₂ core into the carbonyl antibonding orbital. This was supported by the crystal structure of the benzoyl compound, and by O-methylation with methyl triflate. Double addition to the μ -acylium species by Li⁺₂ Me₂CuCN²⁻ directly formed the isopropenylidene species CpFe(CO)(μ -CO)(μ -C=CMe₂)Fe(CO)Cp⁵¹⁹.

Thiolate nucleophiles attacked the carbyne complex CpFe(CO)- $(\mu-CO)(\mu-CSMe)Fe(CO)Cp^{+}$ at the carbyne carbon, giving neutral carbene complexes having a bridging C(SMe)(SR) group [R = CH₂Ph, Me, Ph]. PhSe, PhCH2MgCl, and BH4 reacted similarly, but 4dimethylaminopyridine displaced a terminal CO. The carbene complexes CpFe(CO)(µ-CO)[µ-C(SMe)(ZPh)]Fe(CO)Cp [Z = S, Se] underwent rearrangement of the ZPh group with carbonyl loss to form $CpFe(CO)(\mu-CO)(\mu-SMe)Fe(ZPh)Cp^{520}$. Attack of cyanide ion on the $(\mu-CSR)$ cations gave $[\mu-C(SR)(CN)]$ cyanocarbene derivatives, whereas thiocyanate led to formation of CpFe(CO)(μ -CO)(μ -CSR)Fe(SCN)Cp⁵²¹, probably by a rearrangement process like that demonstrated for the ZPh species above. Irradiation of the [p-C(SR)(CN)] species led to intramolecular displacement of a CO by the sulfur⁵²¹. Methylation of CpFe(CO)(μ -CO)[μ -C(CN)NMeC(=O)-SMelFe(CO)Cp with methyl triflate occurred with loss of methyl isocyanate to form a $[\mu-C(CN)(SMe_2)^+]$ product, also obtainable from the $[\mu-C(CN)(SMe)]$ cyanocarbene complex. Dimethyl sulfide was readily displaced by nucleophiles, including Me⁻, NMe₂⁻, H⁻, OR, and CN^{-522} .

Nucleophilic attack by alkenylidene complexes CpFe(CO)(µ-

CO) (μ -C=CHR)Fe(CO)Cp [R = H, Me, CHMe₂] on cyanoethyne led to formation of [μ -C=CR-CH=CHCN] products. The vinylidene complex reacted similarly with dicyanoethyne at -60°, giving the dicyanobutadienylidene product⁵²³. CpFe(μ -CO) (μ -C=CH₂) (μ -DPPM)FeCp reacted with TCNE to form both a [μ -C=CH-C(CN)=C(CN)₂] and a [μ -C=C=C)CN)₂) product, with loss of HCN and CH₂)CN)₂, respectively⁵²⁴. Photochemical insertion of alkynes into Fp₂ has been studied by laser flash photolysis. The results indicated initial loss of CO to form CpFe(μ -CO)₃FeCp, which irreversibly reacted with alkyne to form CpFe(η ²-RC=CR) (μ -CO)₂Fe(CO)Cp, which collapsed to the dimetallacyclopentenone products, CpFe(CO)(μ -CO)-[μ , η ¹, η ³-CR=CR-C(=O)]FeCp⁵²⁵.

Reaction of Collman's reagent with $(\eta^{6}-FpC_{6}H_{5})Cr(CO)_{3}$ led, via some curious and complex mechanism, to formation of 93^{82} . This anion resembles some analogs produced by Cutler³⁰⁷ by reaction of (for example) Fp⁻ with InFe(CO)₂Me, but appears to be the first having simple cyclopentadienyl rings.

9c. Heterobimetallic Compounds

Reaction of Fp^- with $LnCl_3$ [Ln = Nd, Sm, Gd] in THF produced $FpLnCl_2(THF)_{1,2}$. IR data indicated carbonyls bridging between Fe and Ln^{241} .

The (µ-pentafulvalene) complex 94 has been prepared by the simple expedient of allowing the dihydrofulvalene to react with equimolar amounts of Fe(CO)₅ and Mo(CO)₆ and separating the homonuclear and heteronuclear products⁵⁰⁷. Reaction of the propargylic complexes CpM(CO)₃CH₂C==CR [M = Mo, W; R = Me, Ph, p-tolyll with Fe₂(CO)₉ produced CpM(CO)₂(µ, η^2 , η^3 -RCCCH₂)Fe(CO)₃, 95 (crystal structures for M = W,R = Ph and P-tolyl)⁵²⁶. Similar reaction of CpW(CO)₂=P(Ar)-CH=PAr [Ar = 2,4,6-tri(t-butyl)phenyl] with Fe₂(CO)₃ produced 96⁵²³. A $\{\eta^4-1-malynda-3-ndacedaceycla-butadiene)Fe(CO)₃ complex resulted from head-to-tail cyclization off <math>\{\rho^4,W(CO), \{u-CAr\}Fe(CO)_2\}$ (Ar = [n-ta]y(1) with Re₂C== 2^{518} .

When the anionic dicarborane tungsten complex $(\eta^6 - C_2 Me_2 - B_{10} \times (10^{5} Mc^2))$ TMF, the product was

 $(\eta^6 - C_2 Me_2 B_{10} H_{10}) W(CO)_2 (\mu - CAr) Fe(CO)_2^-$, whose apparent electron deficiency was relieved by coordination of a B-H bond of the dicarborane ligand with the iron, as revealed in the crystal structure⁵²⁹.

Reactions of FpCO⁺ with Mn(CO)₅⁻ and Fp⁻ with Mn(CO)₆⁺ have been investigated mechanistically. The latter reaction produced only Fp₂ and Mn₂(CO)₁₀, although labelling experiments showed transfer of CO from manganese to iron via Fp-C(=O)-Mn(CO)₅. The reaction of FpCO⁺ with Mn(CO)₅⁻ produced FpMn(CO)₅ in addition to the two dimers²⁴². Rhenium-iron µ-formate species were obtained by reaction of CpRe(CO)(NO)OCHO with FpH and Ph₃C⁺ or by reaction of FpOCHO with [CpRe(CO)(NO)]₂OCHO⁺. Iron-tungsten µ-formate species were also produced similarly⁵³⁰.

Heterobimetallic 1,4-diazabutadiene (DAB) complexes were synthesized by reaction of (DAB)Fe(CO)₃ with Ru₃(CO)₁₂ or (DAB)-Ru(CO)₃ with Fe₂(CO)₉. The structures were analogous to that of the central species in Scheme I, with the iron η^2 -coordinated and the ruthenium N-coordinated⁵³¹. (OC)₃Ru[μ , η^1 , η^2 -RN=CH-CH=NR]-Fe(CO)₃ underwent hydrogenation at the ligand C-C bond at 90° to form µ-ethanediyldiamido species, (OC)₃Fe(µ-RNCH₂CH₂NR)Ru(CO)₃ (cf. 67)⁵³². Reactions of these complexes and their Fe_2 and Ru_2 analogs with hydrogen and with alkynes have been reviewed 490 . Reaction of (DAB)FeRu(CO)₆ with allene occurred so as to form a metalla-TMM product, $[\eta^4 - L_4 Ru - C(CH_2)_2]Fe(CO)_3$, $L_4 Ru$ indicating a (DAB)Ru(CO), group⁵³¹. Chelation of ruthenium by DAB is characteristic of the products of many adducts of (DAB)FeRu(CO)₆ with unsaturated organics. Scheme II provides an additional example, addition of $MeC \equiv CNEt_2$ yielding the carbenoid product shown, with ruthenium (M) chelated by the DAB ligand⁴⁸⁹. Addition of dimethyl acetylenedicarboxylate to the iron-ruthenium compound produced (OC)₃Fe(μ_2 , η^2 -ECCE)Ru(CO)₂(DAB) and **97.** Methyl propynoate yielded 98 (two isomers), which reversibly lost CO to form Fe-Ru bonded tetracarbonyl species⁵³³.

The dihydride complex (DAB) $RhH_2(PPh_3)_2^+$ reacted with $HFe(CO)_4^-$ to form the ionic species 12 and also neutral complexes such as 99⁸⁴.

FpH reacted with $Co_2(CO)_8$ to form $HCo(CO)_4$ and $FpCo(CO)_4$, the latter product in 70% yield²³³. Ligand exchange with triphe-
nylphosphine produced FpCo(CO)₃PPh₃ (crystal structure)⁵³⁴. Impregmation of TpCo(CO)₄ into alumina produced a nightly selective catalyst for alkene synthesis from CO and H₂. Mössbauer and magnetic studies indicated retention of the Fe-Co bond in the surface layers⁵³⁵.

The unsaturated, triply hydride-bridged species [Me-C(CH₂PPb₂)₃]Rb(μ -E)₃Fe[MeC(CE₂PEt₂)₃]²⁺ has been reported⁵³⁶. Nucleophilic attack of (OC)₄FePR₂⁻ [R = cyclohexyl] on ClRh(CO)(PPh₃)₂ produced (OC)₃(Ph₃P)Fe(μ -PR₂)Rh(PPh₃)(CO), whose crystal structure was determined. With ClRh(COD)₂, (OC)₄Fe(μ -PR₂)Rh(COD) resulted. Additions of CO and phosphines to both compounds were studied⁵³⁷. Similar reaction of (OC)₄FePR₂⁻ with ClIr(CO)(PPh₃)₂ produced the more saturated (OC)₃(Ph₃P)Fe(μ -PR₂)Ir(PPh₃)(CO)₂, which protonated on iridium with loss of a CO ligand. Reaction with ClIr(COD)₂ was the same as in the rhodium case. Ligand substitution reactions of the iron-iridium species were also extensively explored⁵³⁸. The structure of (OC)₂Rh(μ -Cl)[μ -Ph₂PC(=CH₂)PPh₂]Fe(CO)₃ has been solved by a new Laue photographic method⁵³⁹.

A product with a novel siloxane bridge, 100, resulted when <u>trans</u>-PdCl₂L₂ [L = PhCN, PPh₃, or L₂ = DPPM] was allowed to react with <u>mer</u>-Fe(CO)₃H[Si(OMe)₃](η^1 -DPPM) or its conjugate base. A platinum analog was also synthesized similarly, along with a platinumhydride compound from (Ph₃P)₂Pt(C₂H₄)⁵⁴⁰.

10. TRINUCLEAR CLUSTER COMPOUNDS

10a. Tri-iron Compounds

Tri-iron compounds with 46 cluster electrons may be viewed as electron-deficient, since a closed triangular Fe₃ cluster should have 48. Perhaps as a consequence of their unsaturation, (alkyne)Fe₃(CO)₉ clusters and their mono- and diphosphine substitution products were found in a study of HPLC separation of cluster compounds to be comparatively strongly bound to silica⁵⁴¹.

Several examples of the well-known 46-electron $(C_4R_4)Fe_3$ -(CO)₈ clusters 101 (e.g., R = Ph, Et, etc.) have been studied by ¹³C and ¹H NMR spectroscopy and by cyclic voltammetry. The triirom compounds were more easily reduced than the triruthenium analogs, and gave stable mono- and dianions, the latter in consonance with the EAN rule⁵⁴³. A new compound of type 101, with the R's alternating ally1 and diethylamino groups, was among the products of reaction of diethyl(pent-4-en-1-ynyl)amine with Fe_3 -(CO)₁₂. Also formed was the closely related 48-electron cluster, in which double bond migration within an allyl group has made two additional electrons available to coordinate to the Fe_3 cluster⁴⁹⁵.

Phosphorus analogs of **101** (P replacing a CR group in **101**) have been prepared by photoreaction of $Me_3C-C=P$ with $Fe_3(CO)_9(\mu-CF)_2$. The unshared electron pair on phosphorus remained active, coordinating readily to metal groups such as $Cr(CO)_5^{544}$.

The use of $\operatorname{Fe_3(CO)_{12}}$ under three-phase conditions to reduce nitrobenzene to aniline has been researched; an advantage of this method was ease of product isolation⁵⁴⁵. Reduction of ketones by alcohols catalyzed by $\operatorname{HFe_3(CO)_{11}}^-$ under phase transfer conditions has been studied, and a mechanism proposed⁵⁴⁶. Studies of $\operatorname{Fe_{3^-}}(\operatorname{CO}_{12})$ impregnated in alumina used Mössbauer and IR spectroscopy to characterize the species present⁵⁴⁷. Photolysis was used to "graft" $\operatorname{Fe_3(CO)_{12}}$ weakly physisorbed on silica to the substrate, in the form of $\operatorname{HFe_3(CO)_{11}}^-$ ions⁵⁴⁸.

Structures and dynamic behavior in solution of $Fe_3(CO)_{12-n}L_n$ [n = 2,3; L = various trialkyl phosphites or triphenyl phosphite] have been studied by two groups^{462,549}. The very facile fluxional processes in these compounds make definition of solution structures difficult, but the results of the two groups showed general agreement. A crystal structure of $Fe_3(CO)_{10}[P(OMe)_3]_2$ showed <u>trans</u>-diequatorial substitution, with bridging carbonyl groups between the unsubstituted iron and one of the substituted ones⁵⁴⁹.

Reaction of tin and germanium hydrides with $Fe_2(CO)_9$ produced mixtures of clusters. In addition to 64, $Ge_2Fe_7(CO)_{26}$ has been isolated and characterized by crystal structure: it proved to be a $Fe_3(CO)_{12}$ derivative having three $Fe(CO)_3$ groups joined in a closed triangle, with the three Fe-Fe bonds bridged by one CO and two $[GeFe_2(CO)_8]$ groups⁴⁴⁰. Also newly obtained, from SnH₄, was another $Fe_3(CO)_{12}$ derivative, SnFe₅(CO)₁₉, having one Fe-Fe bond bridged by a carbonyl group and a $[SnFe_2(CO)_8]$ group⁵⁵⁰.

Protonation of $Sb[Fe(CO)_4]_4^{3-}$ with one equivalent of trifluoromethanesulfonic acid resulted in carbonyl loss and formation of 103, a tetrahedral dianion with appreciably shorter Fe-Sb bond lengths than its trianion precursor. Further protonation occurred at an Fe-Fe edge¹⁰⁴. The cluster products $(Cp'Fe)_3(\mu - CO)_3(\mu_3 - N \rightarrow O)$ and its Cp^{*} analog have been identified as byproducts in synthesis of $(CpFeNO)_2$ by reaction of Fp₂ and NO at 100⁰ ⁵⁵¹. The analogous bismuth cluster, $(CpFe)_3(\mu - CO)_3(\mu_3 - Bi)$ resulted from photodecarbonylation of Fp₂Bi⁵⁵².

Reaction of sulfur, cyclohexadiene, and $Fe_3(CO)_{12}$ produced the cluster product 104, as shown by a crystal structure determination⁵⁵³. In the anion [PhP-C(Me)=CHPh]Fe₃(CO)_g , prepared by reaction of Ph₂P-C=C-Me with HFe₃(CO)₁₁ at 58°, the phenylphosphido group bridges one Fe-Fe bond while the alkene is π -bonded to the third iron of a closed triangle⁵⁵⁴. Ph₂P-C=CPh gave an analogous product⁵⁵⁴, but Ph₂P-C=CCMe₃ reacted with still more extensive bond cleavage and hydrogen migration to form 105, along with 85 in lesser amount⁴⁹⁴.

 $(PPN^+)_2$ Fe₃(CO)₁₁²⁻ produced tetrahedral anions [Fe($(CD)_3$)₃) $(\nu$ -CD) $(\nu_3$ -CDC)=D)R)⁻)R = CH=CHMe or CH=CHPh) upon reaction with acyl chlorides, and μ_3 -acyl anions [Fe(CO)₃]₃[μ_3 -C(=O)R)]⁻, in which the acyl group acts as a five-electron donor, upon reaction with alkyl halides⁵⁵⁵.

The azo group which served as a two-electron donor in 16 expanded its coordination to become a six-electron donor in $(\mu_3,\eta^2-C_7H_{10}N_2)Fe_2(CO)_6^{102}$. No di-iron products (analogous to 67) formed in the reaction of the fused diazete with Fe₂(CO)₃, in contrast to results with other cyclic and acyclic azo compounds. Such a product did form from R-N=N-R [R = Et, Pr], along with $(\mu_3,\eta^2-N_2R_2)Fe_3(CO)_9$. This 48-electron species cleaved upon heating to form the open 50-electron species 106 [Y = Z = NR]. The mechanism of formation of 106 was found to involve initial CO loss, rearrangement, and CO reattachment⁴⁴⁶. Azobenzene gave only the opened product 106 upon reaction with iron carbonyl reagents⁴⁴⁶.

Photochemical reaction of $[Fe(CO)_3]_3(\mu-H)(\mu_3-SCMe_3)$ with diphenylacetylene produced 107^{460} . The trigonal bipyramidal cluster $[Fe(CO)_3]_3(\mu_3-CF)_2$ exchanged fluoride for other halogens upon treatment with Al_2X_6 [X = Cl, Br]. Reaction with Al_2Br_6 under a CG atmosphere and then with methanol produced $[Fe(CO)_3]_3(\mu_3-C-CO_2Me)_2$. In benzene solution, treatment with

 Al_2Br_6 followed by methanol produced 108⁵⁵⁶. Many additional reactions of $Fe_3(CO)_9(\mu_3-CF)_2$ have been reviewed⁴⁹⁷.

Introduction of a chalcogen atom into $[Fe(CO)_3]_3(\mu-CO)(\mu_3-$ PR), to form 106 [Y = PR, Z = S, Se, Te] was achieved through treatment with ZCN or ArZZAr [Z = Se, Te]. In the latter case, 109 [Ar = mesityl] also formed⁴⁵⁰. Co-photolysis of Fe₃(CO)₉(μ_3 -S)₂ [106, Y = Z = S] with $W(CO)_6$ yielded a product in which the Fe₃S₂ cluster remained intact, with one sulfur further coordinated to a W(CO)₅ group [i.e., 106, Y = S, $Z = S \rightarrow W(CO)_5$]. With W(CO)₅(PMe₂Ph), the analogous product was accompanied by WFe₂ and WFe₃ cluster products⁵⁵⁷. Reaction of the three dichalcogen complexes, Z₂Fe₃(CO)₉, with the three Group 10 M(PPh₃)₄ complexes proceeded by more than one mechanism to produce $(OC)_3Fe(\mu-Z M(PPh_3)_2 - Z)Fe(CO)_3$ (especially with Z = Te) and triphenylphosphine-substituted derivatives of Z₂Fe₃(CO)₉^{478,479}. Te₂Fe₃(CO)₉ was also used as a starting material for synthesis of rutheniumtellurium and cobalt-tellurium clusters⁵⁵⁸.

Photocycloaddition of 2-butyne to 106 [Y = Z = PCHMe₂, PCMe₃] produced 110. Phenyl- and diphenylacetylene reacted similarly⁴⁸². Phenylacetylene reacted thermally with $(\mu_3, \eta^2 - N_2 Et_2) -$ Fe₃(CO)₉ to form 111 and an isomer with the terminal iron bound into a ferrole ring. The two isomers equilibrated upon heating, with 111 the predominant form⁵⁵⁹.

10b. Fe2M Clusters

The great majority of trimetallic clusters reported are 48electron <u>closo</u> clusters. Two 46-electron exceptions among this year's Fe_2M clusters are (DPPE)PtFe₂(CO)₈⁵⁶⁰ and M[Fe(CO)₄H]₂ [M = Zn, Cd, Hg]⁸³. In each case, the electron deficiency arises from the presence of a late transition element. The platinum compound showed a closed triangular structure, with the platinum exhibiting a 16-electron configuration⁵⁶⁰. The Group 12 compounds were linear, as shown in the crystal structure of the PPN⁺ salt of $Hg[Fe(CO)_{4}]_{2}^{2-83}$.

The 48-electron tetrahedral clusters $[Fe(CO)_3]_2[W(CO)_4L](\mu_3-S)$ [L = CO, PMe₂Ph] were prepared by reaction of $Fe_3(CO)_9(\mu_3-CO)(\mu_3-S)$ with LW(CO)₅ under UV irradiation. The W-Fe bonds in the phosphine-substituted cluster were about 0.04 Å shorter than those in Fe₂W(CO)₁₁S⁵⁶¹. Trinuclear allenyl clus-

Cp(OC)2W

ters 112 [M = Mo, W; R = Me, Ph, p-tolyl] were formed along with previously described dinuclear allenyl clusters 95 in the reactions of CpM(CO)₂CH₂C=CR with iron carbonyls⁵²⁶. The alkylidyne molybdenum complex ($\eta^5-Me_2C_2B_9H_9$)(OC)[P(OMe)₃]₂Mo=CAr⁻ [Ar =ptolyl] reacted with Fe₂(CO)₉ to form a μ_3 -alkylidyne complex, MoFe₂(CO)₈(μ_3 -CAr)($\mu,\eta^5,\eta^1,\eta^1-Me_2C_2B_9H_7$)⁻, in which two B-Fe bonds joined the carborane cap to the Fe(CO)₃ groups, allowing the carborane to function as a 6-electron ligand⁵⁶². The analogous tungsten compound formed similarly, although the more hindered aryl group, 2,6-dimethylphenyl, allowed only the formation of a bimetallic product, previously cited⁵²⁹.

Nitrosobenzene reacted with $Fe_2Ru(CO)_{11}(NCMe)$ in a halide ion-promoted reaction at 0° in THF to form $Fe_2Ru(CO)_9(\mu_3-NPh)(\mu_3-CO)$. The FeRu₂ analog was prepared similarly⁵⁶³.

Substitution of phosphine for CO on PPN⁺ $Fe_2Co(CO)_9(CCO)^$ has been found to occur by an associative mechanism, to form cobalt-substituted products, 113. Activation parameters have been measured, and the reaction has been found to occur more rapidly in more polar solvents⁵⁶⁴. Equation 25 shows a plau-

sible mechanism. The products 113 underwent an exchange reaction between the carbon-carbonyl and cobalt-phosphine ligands, forming $Fe_2Co(CO)_9(\mu_3-CL)^-$. The rate was decreased by bulky groups [phenyl, cyclohexyl] on the phosphine ligand L, and a bridged transition state leading to pairwise exchange was proposed⁵⁶⁵. The crystal structure of $Fe_2Co(CO)_9(\mu_3-CPMe_3)^-$ showed a cluster carbon-phosphorus bond length of 1.715 Å, compared to P-methyl bond lengths averaging 1.792⁵⁶⁶.

Reaction of the ketenylidene cluster $Fe_2Co(CO)_9(\mu_3CCO)^-$ with DMPM resulted in substitution at cobalt and at iron, retaining the μ_3 -ketenylidene structure⁵⁶⁶. However, the longer reach afforded in DMPE resulted in reaction to form the ylide-type product **114**. Protonation of **114** occurred on the Fe-Fe bond, with migration of the phospine from cobalt to iron⁵⁶⁷.

Low temperature NMR studies showed no sign of hindered rotation of the aryl ring in $Fe_2Co(CO)_9(\mu-CO)(\mu_3-CAr)$ [Ar = p-toly1, 3,4-xyly1], contradicting a previous report⁵⁶⁸. Syntheses of $Cp_3RhFe_2(CO)_4$ by reaction of $CpRh(C_2H_4)_2$ with Fp_2 or of $CpRhBr_2$ with Fp^- have been explored⁵⁶⁹.

Reaction of $Cp_2Ni_2(Ph_2P-C \equiv CR)$ [R = CHMe₂, Ph] with iron carbo nyls gave <u>inter alia</u> $CpNiFe_2(CO)_6(\mu_3,\eta^2-CCR)$ and an incompletely characterized $Cp_2NiFe_2(CO)_3(\mu-PPh_2)(C_2R)^{570}$. Use of HPLC for separating these and several other products was investigated⁵⁴¹.

Photocondensation of $\text{Fe}_3(\text{CO})_9(\mu_3-\text{S})_2$ [106, Y = Z = S] and $W(\text{CO})_5(\text{PMe}_2\text{Ph})$ led to replacement of the middle $\text{Fe}(\text{CO})_3$ group in the 50-electron starting material by a isolobal $W(\text{CO})_3(\text{PMe}_2\text{Ph})$ group, with retention of the open triangular 50-electron cluster structure. The same product also formed using $\text{Fe}_2(\text{CO})_6(\mu-S_2)$ under similar conditions. Products with one sulfur additionally coordinated to a $W(\text{CO})_4$ L group [L = CO, PMe_2Ph] were also obtained in some of these reactions⁵⁵⁷. Another 50-electron cluster, 115, resulted from reaction of CpCo(CO)₂ with $\text{Fe}_2(\text{CO})_6(\mu-S_2)^{476}$.

10c. FeM₂ Clusters

Vahrenkamp has reviewed the extensive work of his group on the preparation and properties of tetrahedral $2M_3$ clusters, especially those which possess framework chirality due to the presence of three different metals⁵⁷¹.

The compounds $Fp-Hg-M(CO)_3(bpy)X$ [M = Mo, W; X = halogens, SCN, and N₃] were prepared by insertion of M(CO)₃(bpy), from the acetonitrile adduct, into the Hg-X bond of FpHgX. These 46electron "clusters" presumably have a linear trimetallic back-

184

 $bone^{572}$.

Reaction of 114 with $\text{Co}_2(\text{CO})_8$ resulted in replacement of a $\text{Fe}(\text{CO})_3^-$ vertex by a $\text{Co}(\text{CO})_3$, with the extruded iron remaining attached through the μ -DPPE group in the product, 116⁵⁶⁷. μ_3^- Ethylidyne clusters $\text{HFeCo}_2(\text{CO})_9(\mu_3^-\text{CCH}_3)$ and its CoFeMo analog lost H₂ upon heating to form μ_3^- vinylidene clusters; the reaction was reversible only with the CoFeMo system, however. Binding of the vinylidene unit to trinuclear clusters was considered to be particularly favorable⁵⁷³. Reaction of phosphines with HIFe(CO)₃][Co(CO)₃][CpMo(CO)₂](μ_3^- CMe) showed that the cluster was unexpectedly inert to substitution reactions⁵⁷⁴.

Reactions of the unsaturated complex CpMoFe(CO)₆(µ-CAr) [Ar = p-tolyl] with the reagents (C_2H_4)₂Pt(PR₃), (Ind)Rh(CO)₂, and Cp^{*}Cu(THF) led to formation of trimetallic alkylidyne clusters. The 48-electron rhodium cluster 117 had a closed tetrahedral structure, but the 46-electron platinum product, [CpMo(CO),]- $[Fe(CO)_3][Pt(CO))PR_3](\mu-C-Ar)$, 118 ?, probably had the $\mu-C-Ar$ group bridging the Fe-Mo bond and not attached to the platinum, based on the carbyne carbon resonance at 340 ppm. The structure of the copper product was also not fully deducible from the NMR data⁵⁷⁵. Reaction of $Cp(OC)_2M \equiv C-C \equiv C-CMe_3$ [M = Mo, W] with Fe₂(CO)_o proceeded with ligand coupling to form **119.** In the case of tungsten, a byproduct had an Fe2(CO) group attached to the C=C bond of the starting material. An analog of structure 117 [Me₂C-C≡C-C instead of Ar-C] was prepared by reaction of $[Cp(OC)_{2}Mo][(Ind)Rh(CO)](\mu-C-C=C-CMe_{3})$ with Fe₂(CO)₉⁵⁷⁶.

11. TETRA- AND POLYNUCLEAR CLUSTER COMPOUNDS

A review of tetranuclear clusters containing iron, ruthenium, cobalt, and/or rhodium compared in particular their metal-metal bond distances, NMR properties, and reactivity toward phosphine substitution⁵⁷⁷.

A 58-electron planar Fe₄ "cluster" has been prepared. The structure showed a closed parallelogram of iron nuclei, with the irons alternately being coordinated to four carbonyl groups or to two pyridine molecules. Some degree of bonding between the Fe(pyr)₂ groups was suggested by a distance of 2.76 Å across the

diagonal between them⁵⁷⁸. An electron-deficient (58-electron) cubane cluster, $(Cp'V)_2[Fe(NO)]_2(\mu_3-S)_4$, has been prepared. Its structure was compared to those of V_2Co_2 and V_2Ni_2 analogs, with the conclusion that increasing electron density principally increased the M-M bond lengths [Fe-Fe 2.59 Å, Co-Co 2.73 Å, Ni-Ni 3.02 Å (non-bonded]⁵⁷⁹.

Thermolysis of Fp₂ in boiling xylene produced the well-known 60-electron tetrahedral cluster $[CpFe(CO)]_4$. Thermolysis of the cluster compound at 300° in a sealed tube produced ferrocene, iron, and CO; differences in the products from Fp₂ and $[CpFe(CO)]_4$ have been discussed⁵⁰³. The tetranuclear cluster has been oxidized to its radical-cation by air in the presence of acids⁵⁸⁰.

Reaction of Fp₂ and Co₂(CO)₆(μ , η^2 -RCCR) [R = CF₃] at 100^o produced three 60-electron clusters: 71% (CpFe)₂[Co(CO)₂]₂(μ ₃-CO)₂(μ -RCCR), 7% (CpFe)₃[Co(CO)₂](μ ₃-CO)₂(μ -RCCR), and 14% (CpFe)₂[Co(CO)₂]₂(μ -CO)(μ ₃-CR)₂. The structures of the first two were not determined, but the latter proved to have structure **120**, showing fission of the alkyne into two alkylidyne fragments⁵⁸¹.

The effectiveness of $MCo_3(CO)_{12}$ [M = Ru, Fe] salts in catalyzing hydroformylation reactions has been assessed, and the iron cluster found to be less effective than the ruthenium cluster, but more effective than $Co_4(CO)_{12}^{582}$. Cationic $Cp_4Rh_3Fe_9\mu$ - $CO)_3^+$ clusters have been synthesized by reaction of $CpFe(PhNO_2)^+$ with $[CpRh(\mu-CO)]_3^{-583}$.

Addition of two electrons to the closed tetrahedral clusters generally produces a cluster with a "butterfly" skeleton. A number of chalcogen-bridged examples of these have been reported. For example, irradiation of **106** [Y = S, Z = $S \rightarrow W(CO)_4$ (PMe₂Ph) in the ultraviolet produced **121**⁵⁵⁷. An X-ray crystal structure of the closely related (CpMo)₂[Fe(CO)₃]₂(µ-CO)₂(µ₃-S)₂ has been reported⁵⁸⁴. The tritelluride **122** was prepared by reaction of **106** [Y = Z = Te] with Cp₂Mo₂(CO)₆ and also characterized by a crystal structure⁵⁸⁵.

The role of the μ_4 -bridging atom in butterfly clusters has been explored by Fenske-Hall calculations on Fe₄(CO)₁₂Z [Z = C²⁻, N⁻, O] The Z to wingtip bonds were found to weaken upon progression from C to N to O. There was little energetic difference in the two isomers of $FeRu_3(CO)_{12}(\mu_4-N)^{-586}$. $Fe_4(CO)_{12}[\mu_4-C-C(=O)-R]^-$ [R = Me, CH_2Ph] was found by cyclic voltammetry and bulk electrolysis to undergo ready reduction to a stable dianion-radical. EPR spectra indicated the spin density to reside on the iron carbonyl cluster and to be isolated from the CC(=O)R ligand. This was consistent with the results of Fenske-Hall MO calculations and the results of crystal structure determination of the dianion-radical⁵⁸⁷.

The preparation and structure of a borane-substituted carbido cluster, 123, have been described. The borane group was unreactive toward Lewis bases, indicating effective electron donation by the cluster to the vacant boron p-orbital⁵⁸⁸. Goldphosphine derivatives of $H[Fe(CO)_3]_4B^{2-}$ have been described. Depending on the phosphine, two different structural types were characterized: one with the hydride bridging from boron to a wingtip and the gold-phosphine groups associated with the other wingtip and an Fe₂B face, and one with the hydride bridging the hinge irons and the two golds bridging from boron to the wingtips. The two isomers interconverted in solution⁵⁸⁹.

A butterfly cluster 124 resulted from photoreaction of Fe₃-(CO)₉(μ_3 -NCPh) with Fe₂(CO)₉. In 124, the benzonitrile ligand acts as a six-electron donor, giving an overall 62-electron butterfly. A similar reaction using Fe₃(CO)₉(MeCCMe) produced [Fe(CO)₃]₄(MeCCMe)⁵⁹⁰. The butterfly-derived alkyne complexes [Fe(CO)₃]₄(μ_4 , η^2 -RCCR) appear to be electron-deficient, having only 60 cluster electrons if the alkyne is taken as a four electron donor. Involvement of the C-C sigma electrons, as suggested

in structure 125, would tend to remedy the deficiency.

A heteronuclear analog of 125, $(Cp^*Co)[Fe(CO)_3]_3(\mu_4,\eta^2 - FCCF)$, was characterized by a crystal structure from among the products of reaction of Fe₃(CO)₉(μ_3 -CF)₂ and Cp^{*}Co(CO)₂; the Cp^{*}Co group was at a wingtip position⁴⁹⁷. A more complex mixed-metal analog was CpNiFe₃(CO)₇(μ -PPh₂)(μ_4 , η^2 -HC==CCHMe₂), 126, one of several products of reaction of (CpNi)₂(Ph₂PC==CCHMe₂) with iron carbonyls, which showed the nickel at a hinge position⁵⁷⁰. This reaction also produced the 64-electron species 127, and separation of such products by HPLC was the focus of a careful

study⁵⁴¹. Cleavage of the C-P bond in $Fe_2Co(CO)_{9}(\mu_3-C-PMe_3)$

during cluster expansion by reaction with $\text{Co}_2(\text{CO})_8$ formed the heteronuclear butterfly carbide product $\text{Fe}_2\text{Co}_2(\mu_4-\text{C})(\text{CO})_{11}-(\text{PMe}_3)^{566}$. A novel platinum-containing butterfly cluster, 128, was formed in high yield from $\text{CpMn}(\text{CO})_2(\mu-\text{CH=CHPh})\text{Pt}(\text{DPPE})$ and $\text{Fe}_2(\text{CO})_9$ in benzene⁵⁶⁰.

64-Electron clusters include the octahedral $Fe_2Co_2(CO)_{11}(\mu_4-PPh)_2$, which has been studied as a hydroformylation catalyst. Entry into the catalytic cycle was proposed to involve initial opening to a <u>nido</u> structure to provide a coordination site⁵⁹¹. Photolysis of **65** gave the closely related octahedral species $Fe_4(CO)_{12}[\mu_4-Sb-Fe(CO)_4^{-1}]_2$, also preparable directly from $Fe_4-(CO)_{13}^{2^-}$ and $SbCl_3^{441}$. The electrochemistry of (CpFe)_4S_4-6 in benzonitrile has been studied by a battery of techniques⁵⁹².

Pentanuclear iron-iridium clusters have been prepared and characterized by means of crystal structures. The 72-electron trigonal bipyramidal anion $\operatorname{Fe_2Ir_3(CO)_{10}(\mu-CO)_4}^-$ was prepared from $\operatorname{Fe(CO)_4}^{2-}$ and $\operatorname{Ir(CO)_2Cl_2}^-$ and consisted of a triangle of $\operatorname{Ir(CO)_2}$ groups capped on each face by a $\operatorname{Fe(CO)_2}$ group, with four carbonyls bridging Ir-Fe bonds and mean Ir-Fe bond length of 2.65 Å. The 76-electron dianion, $\operatorname{FeIr_4(CO)_9(\mu-CO)_6}^{2-}$, was a more elongated trigonal bipyramid, with a $\operatorname{Ir_3(CO)_3(\mu-CO)_3}$ triangle surmounted by a $\operatorname{Fe(CO)_3}$ group (average Ir-Fe distance 2.94 Å) and a $\operatorname{Ir(CO)_3}$ group. The distorted structure was a manifestation of the electron excess⁵⁹³.

A pentametallic oxo cluster, $Fe_2Ru_3(CO)_{14}(\mu_4-0)^{2-}$, a model for surface-bound oxygen, was prepared from $Fe_3(CO)_9(\mu_3-0)^{2-}$ and $Ru_3(CO)_{10}(NCMe)_2$. The benzyltrimethylammonium salt showed the

anion structure 129. The unsaturated (62 electron) cluster $Fe_4(CO)_{11}(\mu_4-PPh)_2$ was expanded by reaction with $CpRh(CO)_2$ to form a 76-electron product, $CpRhFe_4-(CO)_{12}(PPh)_2$, in which a $(CpRh)-(Fe(CO)_3)_3$ quadrangle was capped by a μ_4-PPh group on one side and a $\mu_4/\eta^2-((OC)_3Fe \leftarrow PPh)$ group on the other 595.

78-Electron clusters analogous to 80, but having Co and Ir in the

middle have been described. The crystal structure of the cobalt compound showed no Fe-Fe bond in the Fe_2S_2 grouping [Fe---Fe distance 3.40 Å], and the existence of two Co-Fe bonds [ca. 2.54 Å]⁴⁷⁷.

 $(Ph_3PAu)_5Fe(CO)_3^+$, formally a hexanuclear cluster, resulted from photolysis of a mixture of Ph₃PAuN₃ and any iron carbonyl in THF. Structurally, the cation contained a Au₂Fe tetrahedron, with two additional Ph_3PAu groups capping two Au_2Pe faces⁵⁹⁶. Reaction of Fe(CO)₅ with Pt(COD)₂ formed, inter alia, a planar cluster $Pt_3Fe_3(CO)_{15}$, which consisted of a triangle of Pt(CO) groups, with $Fe(CO)_4$ groups bridging each edge⁵⁹⁷. A more complex platinum-iron cluster, FePt5(CO)9(PEt3)4, was synthesized by reaction of Na₂Fe(CO)₄ with <u>cis-PtCl₂(PEt₃)₂. The reaction also</u> produced Pt₅(CO)₆(PEt₃)₄, which was converted to the FePt₅ cluster by reaction with iron pentacarbonyl. The structure of the FePt₅ cluster showed a Pt₄ tetrahedron with one edge-bridging Pt, and an $Fe(CO)_4$ group bridging from that Pt to a vertex of the tetrahedron⁵⁹⁸. The principal product in the aforementioned Pt(COD)₂ reaction was a derivative of the latter, **130**, with two bridging $Fe(CO)_{\Lambda}$ groups⁵⁹⁷.

Reaction of $Fe_4(CO)_{12}BH_2^-$ with $[Rh(CO)_2Cll_2$ produced the 86electron octahedral cluster $Fe_4Rh_2(CO)_{16}B^-$, 131. This product, with <u>trans</u>-rhodium atoms, was formed upon rearrangement of a spectroscopically characterized <u>Cis</u> isomer. The rearrangement was catalyzed by CO or phosphines, presumably by formation of an intermediate of higher electron count⁶⁰⁰. A cluster isoelectronic with 131, $Fe_3RuCoRhC(CO)_{16}$, was prepared from $Fe_5C(CO)_{14}^{2-}$ by consecutive treatment with $[Ru(CO)_3Cl_2]_2$, $Co_2(CO)_8$, and [Rh- $(CO)_2Cll_2$. The structure was not determined⁶⁰¹. An unexpected product, $[Rh_3(\mu_3-PMe)(PMe_3)_4(CO)_5]^+$ $[FeRh_5(PMe_3)(CO)_{15}]^-$, was obtained via rhodium-catalyzed carbonylation of allylethylamine in the presence of trimethylphosphine. The source of the iron in the product is obscure. The anion was an 86-electron octahedral cluster⁶⁰².

Sulfur bridging is found in some of the largest iron-containing clusters. An example is the cluster $MoFe_5S_6(CO)_6L_3$ [L = PEt_3], which showed a (OC)_6Fe_2S_2 cluster coordinated to a molybdenum through two S-Mo and one Fe-Mo bond (2.90 Å). The molybdenum was part of a Mo(FeL)₃(μ_3 -S)₄ cubane cluster. The compound is related to **79**, but supplemented by the iron-molybdenum bond⁶⁰³. The structure of another capped cubane cluster, **132**, produced upon reaction of Cp₂Mo₂(CO)₆ and Fe₃S₂(CO)₉ [**106**, Y = Z = S], has been determined⁶⁰⁴. A similar reaction, using Mo(CO)₃(NCMe)₃ and Fe₂(CO)₆S₂, produced **133**, a nine-metal cluster held together by multiple sulfur bridges⁶⁰⁵.

MINDO calculations have been applied to hydrogenation of CO on an iron surface, modeled as an Fe₁₂ unit⁸⁹. Freshly reduced powdered iron with particle size of 2-7 μ has been used to dehalogenate vicinal dibromoethanes, and surface-bound bromoalkyl intermediates were implicated⁶⁰⁶.

POST-SCRIPT: At over 600 references, this 1989 review deals with substantially more publications than previous years, which have been averaging about 520 for 1986-88. Some of the increase may be ascribed to more timely coverage of new journals by Chemical Abstracts, but some doubtless arises from increased research activity.

The Journal of Organometallic Chemistry, with 110 citations, maintains a slight lead in number of organoiron papers, with Organometallics second (93 citations), and Journal of the American Chemical Society third (70 citations). All other journals have fewer than 30 citations.

12. REFERENCES

- W. Petz and C. Siebert, [J. Faust, Editor], Gmelin Handbook 1 of Inorganic Chemistry, 8th Edition, Organoiron Compounds, Part Bl4. Gmelin Institut/Springer Verlag, Berlin, Germany, 1989.
- 2 A. Kuhn, N. Kuhn, W. Petz and H. Schumann, [M. Mirbach, Editor], Gmelin Handbook of Inorganic Chemistry, 8th Edi-tion, Organoiron Compounds, Part Bl5. Gmelin Institut/-Springer Verlag, Berlin, Germany, 1989.
- P. A. M. van Koppen, D. B. Jacobson, A. Illies, M. T. Bowers, M. Hanratty, and J. L. Beauchamp, J. Am. Chem. Soc. 111 3 (1989) 1991-2001.
- N. Steinruck and H. Schwarz, Organometallics 8 (1989) 759-4 66.
- A. Bjarnason and J. W. Taylor, Organometallics 8 (1989) 5 2020-4.
- Y. Huang and B. S. Freiser, J. Am. Chem. Soc. 111 (1989) 6 2387-93.
- L. Sallans, K. R. Lane, and B. S. Freiser, J. Am. Chem. Soc. 7 111 (1989) 865-73.
- T. J. MacMahon, T. C. Jackson, and B. S. Freiser, J. Am. Chem. Soc. 111 (1989) 421-7. 8
- K. Eller and H. Schwarz, Organometallics 8 (1989) 1820-2.
- G. Czekay, T. Drewello, K. Eller, W. Zummack, and H. Schwarz, 10 Organometallics 8 (1989) 2439-46.
- 11 G. Czejay, T. Drewello, and H. Schwarz, J. Am. Chem. Soc. 111 (1989) 4561-3.
- G Czekay, K. Eller, D. Schröder, and H. Schwarz, Angew. Chem. Int. Ed. Engl. 28 (1989) 1277-8. 12
- T. Prüsse, T. Drewello, C. B. Lebrilla, and H. Schwarz, J. Am. Chem. Soc. 111 (1989) 2857-61. 13
- 14 K. Eller, T. Drewello, W. Zummack, T. Allspach, U. Annen, M. Regitz, and H. Schwarz, J. Am. Chem. Soc. 111 (1989) 4228-32.
- T. Prüsse and H. Schwarz, Organometallics 8 (1989) 2856-60. S. Karrass, T. Prüsse, K. Eller, and H. Schwarz, J. Am. Chem. 15
- 16 Soc. 111 (1989) 9018-23.
- 17 S. Karrass, K. Eller, C. Schulze, and H. Schwarz, Angew. Chem. Int. Ed. Engl. 28 (1989) 607-8.
- 18 S. W. Buckner and B. S. Freiser, Polyhedron 8 (1989) 1401-6.
- 19 D. B. Jacobson, J. R. Gord, and B. S. Freiser, Organometallics 8 (1989) 2957-60.
- 20 P. B. Armentrout, L. S. Sunderlin, and E. R. Fisher, Inorg. Chem. 28 (1989) 4436-7.
- 21 H. Mestdagh and C. Rolando, J. Am. Chem. Soc. 111 (1989) 3476-8.
- L. M. Lech, J. R. Gord, and B. S. Freiser, J. Am. Chem. Soc. 111 (1989) 8588-92. 22
- 23 S. W. Buckner and B. S. Freiser, J. Phys. Chem. 93 (1989) 3667-73.
- 24 T. Asunta, J. Elranta, and T. Hukka, Finn. Chem. Lett. 15 (1988) 1-6.
- 25 R. D. Cantrell and P. B. Shevlin, J. Am. Chem. Soc. 111 (1989) 2348-9.
- 26 E. P. Cappellani, P. A. Maltby, R. H. Morris, C. T. Schweitzer, and M. R. Steele, Inorg. Chem. 28 (1989) 4437-8.
- 27 G. Albertin, S. Antoniutti, and E. Bordignon, J. Am. Chem. Soc. 111 (1989) 2072-7.
- 28 J. S. Ricci, T. F. Koetzle, M. T. Bautista, T. M. Hofstede,

R. H. Morris, and J. F. Sawyer, J. Am. Chem. Soc. 111 (1989) 8823-7.

- 29 S. Antoniutti, G. Albertin, P. Amendola, and E. Bordignon, J. Chem. Soc., Chem. Comm. (1989) 229-30.
- C. Bianchini, A. Meli, M. Peruzzini, F. Vizza, F. Zanobini, and P. Frediani, Organometallics 8 (1989) 2080-2. 30
- H. Chen, R. A. Bartlett, H. V. Rasika Dias, M. M. Olmstead, and P. P. Power, J. Am. Chem. Soc. 111 (1989) 4338-45. H. O. Fröhlich and H. Francke, Z. Chem. 28 (1988) 413-4. 31
- 32 22
- E. Negishi, K. Akiyoshi, B. O'Connor, K. Takagi, and G. Wu, J. Am. Chem. Soc. 111 (1989) 3089-91. 34
- H. Tom Dieck, M. Mallien, and R. Diercks, J. Mol. Catal. 51 (1989) 53-8.
- 35 H. Tom Dieck, H. Bruder, E. Kuehl, D. Junghans, and K. Hellfeldt, New J. Chem. 13 (1989) 259-68.
- 36 H. Li Kam Wah, M. Postel, and M. Pierrot, Inorg. Chim. Acta 165 (1989) 215-20.
- J. D. Walker and R. Poli, Inorg. Chem. 28 (1989) 1793-801. C. Gueutin, D. Lexa, J.-M. Saveant, and D.-L. Wang, 37
- 38 Organometallics 8 (1989) 1607-13.
- 39 R. D. Arasasingham, A. L. Balch, C. R. Cornman, and L. Latos-Grazynski, J. Am. Chem. Soc. 111 (1989) 4357-63.
- 40 E. J. Corey, S. W. Wright, and S. P. T. Matsuda, J. Am. Chem. Soc. 111 (1989) 1452-5.
- 41 T. G. Traylor and A. R. Miksztal, J. Am. Chem. Soc. 111 (1989) 7443-8.
- 42 D. Dolphin, A. Matsumoto, and C. Shortman, 111 (1989) 411-3. J. Am. Chem. Soc.
- 43 D. Ostovic and T. C. Bruice, J. Am. Chem. Soc. 111 (1989) 6511-7.
- 44 D. H. R. Barton, F. Halley, N. Ozbalik, E. Young, G. Balavoine, A. Gref, and J. Boivin, New J. Chem. 13 (1989) 177-82.
- 45 R. D. Hancock, J. S. Weaving, and H. M. Marques, J. Chem. Soc., Chem. Comm. (1989) 1176-8.
- M. A. Lopez and P. A. Kollman, J. Am. Chem. Soc. 111 (1989) 46 6212-22.
- 47 K. Kim, J. Fettinger, J. L. Sessler, M. Cyr, J. Hugdahl, J. P. Collman, and J. A. Ibers, J. Am. Chem. Soc. 111 (1989) 403-5.
- 48 A. Desbois, M. Momenteau, and M. Lutz, Inorg. Chem. 28 (1989) 825-34.
- 49 Y. Uemori and E. Kyuno, Inorg. Chem. 28 (1989) 1690-4.
- R. B. Dyer, J. J. Lopez-Garriga, O. Einarsdottir, and W. H. 50 Woodruff, J. Am. Chem. Soc. 111 (1989) 8962-3. H. C. Lee and E. Oldfield, J. Am. Chem. Soc. 111 (1989)
- 51 1584-901.
- 52 E. P. Sullivan, Jr. and S. H. Strauss, Inorg. Chem. 28 (1989) 3093-5.
- 53 D. Sellmann, R. Weiss, and F. Knoch, Angew. Chem. 101 (1989) 1719-21.
- 54 J. J. Turner, M. Poliakoff, S. M. Howdle, S. A. Jackson, and J. McLaughlin, Faraday Discuss. Chem. Soc. 86 (1988) 271-84; cf. Chem. Abstr. 111:242959x.
- 55 H. Schumann and K.-H. Köhricht, J. Organometal. Chem. 373 (1989) 307-17.
- 55a R. N. McDonald, D. J. Reed, and A. K.Chowdhury, Organometallics 8 (1989) 1122-4.
- A. Modelli, A. Foffani, F. Scagnolari, S. Torroni, M. Guerra, and D. Jones, J. Am. Chem. Soc. 111 (1989) 6040-5 56
- 57 J.-L. Roustan, M. Abedini, and H. H. Baer, J. Organometal.

Chem. 376 (1989) C20-2.

- J. Takács, L. Markó, and L. Párkányi, J. Organometal. Chem. 58 361 (1989) 109-16.
- 59 S. J. Brown, S. K. C. Kok, P. A. Lay, and A. F. Masters, Aust. J. Chem. 42 (1989) 1839-46.
- R. Birk, H. Berke, H. U. Hund, G. Huttner, L. Zsolnai, L. 60 Dahlenburg, U. Behrens, and T. Sielisch, J. Organometal. Chem. 372 (1989) 397-410.
- 61 J. Li, R. Hoffmann, C. Mealli, and J. Silvestre, Organometallics 8 (1989) 1921-8.
- C. Lowe, H. U. Hund, and H. Berke, J. Organometal. Chem. 372 62 (1989) 295-309.
- 63 U. Schubert and M. Knorr, Inorg. Chem. 28 (1989) 1765-6.
- M. Knorr and U. Schubert, J. Organometal. Chem. 365 (1989) 64 151~61.
- E. Kunz and U. Schubert, Chem. Ber. 122 (1989) 231-4. 65
- G. Bellachioma, G. Cardaci, E. Colomer, R. J. P. Corriu, and A. Vioux, Inorg. Chem. 28 (1989) 519-25. 66
- J. E. Ellis and Y. S. Chen, Organometallics 8 (1989) 1350-67 61.
- 68 T. Koga, S. Makinouchi, and N. Okukado, Chem. Lett. 1988 1141-4.
- 69 M. J. Therien and W. C. Trogler, Inorg. Synth. 25 (1989) 151-6.
- J. J. Brunet, F. B. Kindela, and D. Neibecker, J. 70
- Organometal. Chem. 368 (1989) 209-12. L. P. Battaglia, G. P. Chiusoli, D. Delledonna, M. Nardelli, 71 C. Pelizzi, and G. Predieri, Gazz. Chim. Ital. 119 (1989) 345-7.
- 72 J. T. Lin, S. Y. Wang, S. K. Yeh, and Y. L. Chow, J.
- Organometal. Chem. **359** (1989) C17-21. J. T. Lin, Y. F. Lin, S. Y. Wang, J. S. Sun, and S. K. Yeh, Bull. Inst. Chem., Acad. Sin. **36** (1989) 63-71; cf. Chem. 73 Abstr. 112:170917c.
- L. K. Liu, S. K. Yeh, and C. C. Lin, Bull. Inst. Chem., Acad. Sin. 35 (1988) 45-52; cf. Chem. Abstr. 111:174319m. H. Inoue, T. Kuroiwa, T. Shirai, and E. Fluck, Z. 74
- 75 Naturforsch., B: Chem. Sci. 44 (1989) 641-6.
- 76 H. K. van Dijk, D. J. Stufkens, and A. Oskam, J. Am. Chem. Soc. 111 (1989) 541-7.
- 77 H. K. van Dijk, J. J. Kok, D. J. Stufkens, and A. Oskam, J. Organometal. Chem. 362 (1989) 163-77.
- H.-W. Frühauf, F. Seils, and C. H. Stam, Organometallics 8 78 (1989) 2338-43.
- A. J. Mayr, K. H. Pannell, B. Carrasco-Flores, and F. 79 Cervantes-Lee, Organometallics 8 (1989) 2961-4.
- 80 M. Tilset and V. D. Parker, J. Am. Chem. Soc. 111 (1989) 6711-17.
- 81 G. R. Lee and N. J. Cooper, Organometallics 8 (1989) 1538-44.
- 82 J. A. Heppert, M. E. Thomas-Miller, D. M. Scherubel, F. Takusagawa, M. A. Morgenstern, and M. R. Shaker, Organometallics 8 (1989) 1199-1206.
- S. Alvarez, M. Ferrer, R. Reina, O. Rossell, M. Seco, and X. Solans, J. Organometal. Chem. 377 (1989) 291-303. 83
- M. Iglesias, C. del Pino, A. San José, and S. Martinez-84
- Carrera, J. Organometal. Chem. **366** (1989) 391-401. H. Des Abbayes, J. C. Clement, P. Laurent, J. J. Yaouanc, G. Tanguy, and B. Weinberger, J. Organometal. Chem. **359** (1989) 85 205-14.
- 86 S. C. Shim, C. H. Doh, W. H. Park, and H. S. Lee, Bull.

Korean Chem. Soc. 10 (1989) 475-6; cf. Chem. Abstr. 112:197704t.

- 87 J.-J. Brunet and M. Taillefer, J. Organometal. Chem. 361 (1989) C1-4.
- 88 K. R. Lane and R. R. Squires, Polyhedron 7 (1988) 1609-18.
- G. Blyholder and M. Lawless, J. Am. Chem. Soc. 111 (1989) 89 1275-81.
- 90 Y. K. Chung, Chayon Kwahak Taehak Nonmunjip (Soul Taehakkyo) 13 (1988) 27-31; cf. Chem. Abstr. 112:21122n.
- 91 J.-J. Brunet and E. Passelaigue, J. Organometal. Chem. 375 (1989) 203-15.
- 92 S. Sabo-Etienne, A.-M. Larsonneur, and H. des Abbayes, J. Chem. Soc., Chem. Comm. (1989) 1671-3.
- R. Boese, D. Bläser, and W. Petz, Z. Naturforsch., B: Chem. 93 Sci. 43 (1988) 945-8.
- 94 B. Denise, D. Navarre, H. Rudler, and J. C. Daran, J. Organometal. Chem. 375 (1989) 273-89.
- W. Dukat and D. Naumann, J. Chem. Soc., Dalton Trans. (1989) 95 739-44.
- 96 J. Barrau, N. Ben Hamida, A. Agrebi, and J. Satge, Organometallics 8 (1989) 1585-93.
- 97 S. G. Anema, K. M. Mackay, and B. K. Nicholson, J. Organometal. Chem. 371 (1989) 233-46.
- W. Petz, B. Wrackmeyer, and W. Storch, Chem. Ber. 122 (1989) 98 2261-4.
- J. M. Cassidy and K. H. Whitmire, Inorg. Chem. 28 (1989) 99 2494-6.
- 100 C. Campbell and L. J. Farrugia, Acta Crystallogr., Sect. C: Cryst. Struct. Commun. C45 (1989) 1817-8.
- 101 J. M. Cassidy and K. H. Whitmire, Inorg. Chem. 28 (1989) 1435-9.
- 102 M. N. Ackermann, D. E. Adams, J. Pranata, and C. F. Yamauchi, J. Organometal. Chem. 369 (1989) 55-68.
- 103 H. Westermann, M. Nieger, E. Niecke, J.-P. Majoral, A. M. Caminade, R. Mathieu, and E. Irmer, Organometallics 8 (1989) 244-9.
- 104 S. Luo and K. H. Whitmire, Inorg. Chem. 28 (1989) 1424-31.
- 105 M. Ferrer, O. Rossell, M. Seco, and P. Braunstein, J. Organometal. Chem. 364 (1989) C5-7.
- 106 K. H. Whitmire, M. Shieh, and J. Cassidy, Inorg. Chem. 28 (1989) 3164-70.
- 107 W. F. Liaw, C. Kim, M. Y. Darensbourg, and A. L. Rheingold, J. Am. Chem. Soc. 111 (1989) 3591-7.
- 108 M. Y. Darensbourg, W. F. Liaw, and C. G. Riordan, J. Am. Chem. Soc. 111 (1989) 8051-2.
- 109 C. Moinet, H. Le Bozec, and P. H. Dixneuf, Organometallics 8 (1989) 1493-8.
- 110 S. Lotz, J. L. M. Dillen, and M. M. van Dyk, J. Organometal. Chem. 371 (1989) 371-82.

- 111 C. Ercolani, M. Gardini, V. L. Goedken, G. Pennesi, G. Rossi, U. Russo, and P. Zanonato, Inorg. Chem. 28 (1989) 3097-9.
 112 C. Zybill, D. L. Wilkinson, C. Leis, and G. Muller, Angew. Chem. Int. Ed. Engl. 28 (1989) 203-4.
- 113 M. Kotzian, N. Rosch, H. Schroder, and M. C. Zerner, J. Am. Chem. Soc. 111 (1989) 7687-96.
- 114 T. Majima, T. Ishii, Y. Matsumoto, and M. Takami, J. Am. Chem. Soc. 111 (1989) 2417-22.
- 115 J.-K. Shen, Y.-C. Gao, Q.-Z. Shi, and F. Basolo, Organometallics 8 (1989) 2144-7.
- 116 J. W. Herndon and L. A. McMullen, J. Organometal. Chem. 368 (1989) 83-101.

- 117 S. R. Boone, G. H. Purser, H. R. Chang, M. D. Lowery, D. N. Hendrickson, and C. G. Pierpont, J. Am. Chem. Soc. 111 (1989) 2292-9.
- 118 T. J. Chow and C. C. Cheng, Bull. Inst. Chem., Acad. Sin. 36 (1989) 29-33.
- 119 U. M. Dzhemilev, R. I. Khusnutdinov, Z. S. Muslimov, O. M. Nefedov, and G. A. Tolstikov, Izv. Akad. Nauk SSSR, Ser. Khim. (1988) 2592-9; cf. Chem. Abstr. 111:114778a.
- 120 K. Mohana Rao, G. Spoto, E. Guglielminotti, and A. Zecchina, Inorg. Chem. 28 (1989) 243-7.
- 121 D. Lentz, J. Organometal. Chem. 377 (1989) 305-8.
 122 G. Albertin, D. Baldan, E. Bordignon, J. Organometal. Chem. 377 (1989) 145-50.
- 123 M. J. Filatov, O. V. Gritsenko, and G. M. Zhidomoirov, J. Mol. Catal. 54 (1989) 462-77.
- 124 J. Ko, Bull. Korean Chem. Soc. 9 (1988) 87-94; cf. Chem. Abstr. 111:39518k.
- 125 T. J. Coffy, G. Medford, J. Plotkin, G. J. Long, J. C. Huffman, and S. G. Shore, Organometallics 8 (1989) 2404-9.
- 126 A. Pouilhes and S. E. Thomas, Tetrahedron Lett. 30 (1989) 2285-8.
- 127 J. Yin, J. Chen, W. Xu, T. Xiaojie, and Y. Tang, Huaxue
- Xuebao, 46 (1988) 875-80; cf. Chem. Abstr. 111:195005w. 128 K. Seitz, J. Benecke, and U. Behrens, J. Organometal. Chem. 371 (1989) 247-56.
- 129 H. Angermund, A. K. Bandyopadhyay, F.-W. Grevels, and F. Mark, J. Am. Chem. Soc. 111 (1989) 4656-61.
- 130 C. H. Sun and T. J. Chow, Bull. Inst. Chem., Acad. Sin. 36 (1989) 23-8.
- 131 M. Bouzid, J. P. Pradere, P. Palvadeau, and J. P. Venien, 369 89 205-16.
- 132 V. V. Krivykh, O. V. Gusev, and M. I. Rybinskaya, J. Organometal. Chem. 362 (1989) 351-62.
- 133 V. V. Krivykh, O. V. Gusev, P. V. Petrovskii, and M. I. Rybinskaya, J. Organometal. Chem. 366 (1989) 129-45. 134 V. A. Balusov, A. L. Bykova, and I. P. Podol'skaya, Izv.
- Vyssh. Uchebn. Zaved., Khim. Khim. Tekhnol. 32 (1989) 18-21; cf. Chem. Abstr. 112: 98752a.
- 135 G. M. Williams and D. E. Rudisill, Inorg. Chem. 28 (1989) 797-800.
- 136 C. M. Adams, G. Cerioni, A. Hafner, H. Kalchhauser, W. Von Philipsborn, R. Prewo, and A. Schwenk, Helv. Chim. Acta, 71 (1988) 1116-42.
- 137 K. Itoh, S. Nakanishi, and Y. Otsuji, Chem. Lett. (1989) 615-18.
- 138 M. Brookhart, J. Yoon, and S. K. Noh, J. Am. Chem. Soc. 111 (1989) 4117-8.
- 139 T. Mitsudo, H. Watanabe, T. Sasaki, Y. Takegami, Y. Watanabe, K. Kafuku, and K. Nakatsu, Organometallics 8 (1989) 368-78. 140. W. Tam, D. F. Eaton, J. C. Calabrese, I. D. Williams, Y.
- Wang, and A. G. Anderson, Chem. Mater. 1 (1989) 128-40.
- 141 D. Seyferth, L. L. Anderson, and W. M. Davis,
- Organometallics 8 (1989) 1371-3.
- 142 R. Aumann and B. Trentmann, Chem. Ber. 122 (1989) 1977-82. 143 R. Aumann and B. Trentmann, J. Organometal. Chem. 378 (1989)
- 171-83.
- 144 D. Kappes, H. Gerlach, P. Zbinden, M. Dobler, W. A. König, R. Krebber, and G. Wenz, Angew. Chem. 101 (1989) 1744-5.
- 145 D. S. Marynick and C. M. Kirkpatrick, THEOCHEM 46 (1988) 245-56.
- 146 P. J. Colson, M. Franck-Neumann, and M. Sedrati, Tetrahedron

Lett. 30 (1989) 2393-6.

- 147 H. Kalchhauser, Monatsh. Chem. 120 (1989) 809-13.
- 148 F. Djedaini, D. Gree, J. Martelli, R. Grée, L. Leroy, J. Bolard, and L. Toupet, Tetrahedron Lett. **30** (1989) 3781-4.
- 149 G. W. Dillow, G. Nicol, and P. Kebarle, J. Am. Chem. Soc. 111 (1989) 5465-6.
- 150 J. J. Belbruno, Chem. Phys. Lett. 160 (1989) 267-73. 151 S. Miyanaga, H. Yasuda, H. Sakai, and A. Nakamura, Chem. Mater. 1 (1989) 384-90.
- 152 E. H. Santos, E. Stein, E. J. S. Vichi, and E. B. Saitovitch, J. Organometal. Chem. 375 (1989) 197-201.
- 153 P. Pinsard, J.-P. Lellouche, J.-P. Beaucourt, L. Toupet, L. Schio, and R. Grée, J. Organometal. Chem. 371 (1989) 219-31.
- 154 D. Bankston, J. Organometal. Chem. 379 (1989) 129-38.
- 155 T. Le Gall, J.-P. Lellouche, L. Toupet, and J.-P. Beaucourt, Tetrahedron Lett. 30 (1989) 6517-20.
- 156 M. Hastings and G. R. Stephenson, J. Organometal. Chem. 375 (1989) C27-30.
- 157 M. Laabassi and R. Grée, Tetrahedron Lett. 29 (1988) 611-4.
- 158 A. Gigou, J.-P. Lellouche, J.-P. Beaucourt, L. Toupet, and R. Grée, Angew. Chem. Int. Ed. Engl. 28 (1989) 755-7.
- 159 S. Araki, E. Bonfantini, and P. Vogel, Helv. Chim. Acta, 71 (1988) 1354-66.
- 160 P. A. Carrupt, F. Berchier, P. Vogel, A. A. Pinkerton, and D. Schwarzenbach, Helv. Chim. Acta 71 (1988) 1349-53.
- 161 E. Bonfantini, P. Vogel, and A. A. Pinkerton, Helv. Chim. Acta, 72 (1989) 906-16,
- 162 A. Rubello and P. Vogel, Helv. Chim. Acta 72 (1989) 158-64.
- 163 G. Brodt and W. Siebert, Chem. Ber. 122 (1989) 633-4.
- 164 R. D. Bowen, T. N. Danks, D. Mitchell, and S. E. Thomas, Org. Mass. Spectrom. 23 (1988) 674-6.
- Mass. Spectrom. 23 (1988) 674-6.
 165 H. Kitahara, Y. Tozawa, S. Fujita, A. Taijiri, N. Morita, and T. Asao, Bull. Chem. Soc. Jpn. 61 (1988) 3362-4.
 166 T. N. Danks, D. Rakshit, and S. E. Thomas, J. Chem. Soc., Perkin Trans. 1 (1988) 2091-3.
 167 N. W. Alcock, T. N. Danks, C. J. Richards, and S. E. Thomas, J. Chem. Soc., Chem. Comm. (1989) 21-2.
 168 C. H. Cheng, J. Chin. Chem. Soc. (Taipei) 35 (1988) 261-6; of Chem. Parts 111-1040904.

- cf. Chem. Abstr. 111:194998k.
- 169 A. G. Orpen, N. G. Connelly, M. W. Whiteley, and P. Woodward, J. Chem. Soc., Dalton Trans. (1989) 1751-7.
- 170 G. Maier and D. Born, Angew. Chem. Int. Ed. Engl. 28 (1989) 1050-2.
- 171 P. Patzold, K. Delby, and R. Boese, Z. Naturforsch., B: Chem. Sci. 43 (1988) 839-45.
- 172 P. Binger, B. Biedenbach, R. Schneider, and M. Regitz, Synthesis (1989) 960-1.
- 173 J. Chen, J. Yin, G. Lei, Y. Wang, and G. Lin, J. Chem. Soc., Dalton Trans. (1989) 635-8.
- 174 L. A. Paquette, G. A. O'Doherty, B. L. Miller, and S. L. Geib, Organometallics 8 (1989) 2167-72.
- 175 P. Jutzi, U. Siemeling, A. Müller, and H. Bögge, Organometallics 8 (1989) 1744-50.
- 176 L. Howarth and L. K. Wong, J. Chem. Soc., Dalton Trans. (1989) 1385-91.
- 177 W. C. Joo, H. L. Sohn, J. H. Hong, Y. K. Kun, and P. Singh, Bull. Korean Chem. Soc. 10 (1989) 191-6.
- 178 E. Colomer, R. J. P. Corriu, and M. Lheureux, Organometallics 8 (1989) 2343-8.
- 179 F. Carre, R. J. P. Corriu, C. Guerin, B. J. L. Henner, and W.

W. C. Wong Chi Man, Organometallics 8 (1989) 313-23.

- 180 M. G. Choi and R. J. Angelici, J. Am. Chem. Soc. 111 (1989) 8753-4.
- 181 J. Rodriguez, P. Brun, and B. Waegell, J. Organometal. Chem. 359 (1989) 343-69.
- 182 J. Rodriguez, P. Brun, J. P. Zahra, and B. Waegell, Magn. Reson. Chem. 27 (1989) 96-7.
- 183 T. H. Tseu, C. H. Lin, C. Y. Lee, and C. S. Liu, J. Chin. Chem. Soc. (Taipei) 36 (1989) 91-9; cf. Chem. Abstr. 111:124241j.
- 184 P. Ashkenazi, M. Kapon, and D. Ginsburg, Tetrahedron 44 (1988) 6871-4.
- 185 P. Ashkenazi, A. Mandelbaum, and D. Ginsburg, Org. Mass. Spectrom. 23 (1988) 499-502.
- 186 H. Schäufele, D. Hu, H. Pritzkow, and U. Zenneck, Organometallics 8 (1989) 396-401.
- 187 G. E. Herberich, B. Hessner, N. Klaff, and H. Ohst, J. Organometal. Chem. 375 (1989) 161-6.
- 188 L. Trifonov and A. Orakhovats, Helv. Chim. Acta 72 (1989) 648-52.
- 189 M. N. Abser, M. A. Hashem, S. E. Kabir, and S. S. Ullah, Indian J. Chem., Sect. A 27A (1988) 1050-52.
- 190 J. Chen, G. Lei, Z. Zhang, and Y. Tang, Sci. China, Ser. B 32 (1989) 129-38; cf. Chem. Abstr. 112:139421n.
- 191 A. J. Pearson and V. D. Khetani, J. Am. Chem. Soc. 111 (1989) 6778-89.
- 192 A. J. Pearson and M. W. Zettler, J. Am. Chem. Soc. 111 (1989) 3908-18.
- 193 B. Schönecker, U. Hauschild, V. Marquardt, G. Adam, and C. Walther, Z. Chem. 29 (1989) 218-9.
- 194 E. Haslinger and G. Michl, Liebigs Ann. Chem. (1989) 677-86.
- 195 E. Haslinger and G. Michl, Tetrahedron Lett. 29 (1989) 5751-4.
- 196 M. Nitta, K. Shibata, and H. Miyano, Heterocycles 29 (1989) 253-6.
- 197 M. Nitta, M. Nishimura, and H. Miyano, J. Chem. Soc., Dalton Trans. (1989) 1019-24.
- 198 Z. Goldschmidt, D. Hezroni, H. E. Gottlieb, and S. Antebi, J. Organometal. Chem. 373 (1989) 235-43.
- 199 Z. Goldschmidt and H. E. Gottlieb, NATO ASI Ser., Ser. C 273 (1989) 263-8; cf. Chem. Abstr. 111:173364k.
 200 Z. Goldschmidt and H. E. Gottlieb, J. Organometal. Chem. 361
- 200 Z. Goldschmidt and H. E. Gottlieb, J. Organometal. Chem. 361 (1989) 207-17.
- 201 Z. Goldschmidt, E. Genizi, and H. E. Gottlieb, J. Organometal. Chem. 368 (1989) 351-5.
- 202 J. J. Hickman, Report (1988) ARL/PSU-TR-88-004; Order No. AD-A197023; cf. Chem. Abstr. 112:54914a.
- 203 M. N. Golovin and M. J. Weaver, Report (1987) TR-72; Order No. AD-A188778; cf. Chem. Abstr. 111:97447x.
- 204 J. Loset, L. Helm, A. Merbach, R. Roulet, F. Grepioni, and D. Braga, Helv. Chim. Acta 71 (1988) 1458-66.
- 205 W. A. Donaldson and M. Ramaswamy, Tetrahedron Lett. 30 (1989) 1343-4.
- 206 W. A. Donaldson and M. Ramaswamy, Tetrahedron Lett. 30 (1989) 1339-42.
- 207 R. Benn, A. Rufinska, M. S. Kralik, and R. D. Ernst, J. Organometal. Chem. 375 (1989) 115-21.
- 208 R. Gleiter, I. Hyla-Kryspin, M. L. Ziegler, G. Sergeson, J. C. Green, L. Stahl, and R. D. Ernst, Organometallics 8 (1989) 298-306.
- 209 C. W. Wang, Hua Hsieh 45 (1987) Al31-9; cf. Chem. Abstr.

112:118879c.

- 210 T. I. Odiaka, Inorg. Chim. Acta 164 (1989) 143-7.
- 211 B. R. Reddy, J. Organometal. Chem. 375 (1989) C51-55.
- 212 W. Beck, B. Niemer, J. Breimair, and J. Heidrich, J. Organometal. Chem. 372 (1989) 79-83.
- 213 H.-J. Knölker and M. Bauermeister, J. Chem. Soc., Chem. Comm. (1989) 1468-70.
- 214 H.-J. Knölker, M. Bauermeister, D. Bläser, R. Boese, and J.-B. Pannek, Angew. Chem. 101 (1989) 225-7. 215 L. Li, R. E. Perrier, D. R. Eaton, and M. J. McGlinchey, Can.
- J. Chem. 67 (1989) 1868-77.
- 216 W. S. Hwang, R. L. Liao, Y. L. Horng, and C. W. Ong, Polyhedron 8 (1989) 479-82.
- 217 C. Zou, K. J. Ahmed, and M. S. Wrighton, J. Am. Chem. Soc. 111 (1989) 1133-5.
- 218 A. J. Pearson, V. D. Khetani, and B. A. Roden, J. Org. Chem. 54 (1989) 5141-7.
- 219 M. Ishikura and M. Terashima, J. Chem. Soc., Chem. Comm. (1989) 727-8.
- 220 P. Boyicelli and E. Mincione, Synth. Commun. 18 (1988) 2037-50.
- 221 D. A. Owen, G. R. Stephenson, H. Finch, and S. Swanson, Tetrahedron Lett. 30 (1989) 2607-10.
- 222 W. S. Hwang, R. L. Liao, and C. W. Ong, J. Chin. Chem. Soc. (Taipei) 35 (1988) 77-83; cf. Chem. Abstr. 111:194999m.
- 223 H. J. Knolker, R. Boese, and K. Hartmann, Angew. Chem. 101 (1989) 1745-7.
- 224 M. K. O'Brien, A. J. Pearson, A. A. Pinkerton, W. Schmidt, and K. Willman, J. Am. Chem. Soc. 111 (1989) 1499-501. 225 A. J. Pearson and M. K. O'Brien, J. Org. Chem. 54 (1989)
- 4663-73.
- 226 I. M. Palotai, G. R. Stephenson, W. J. Ross, and D. E. Tupper, J. Organometal. Chem. 364 (1989) Cl1-14.
- 227 W. D. Meng and G. R. Stephenson, J. Organometal. Chem. 371 (1989) 355-60.
- 228 P. W. Howard, G. R. Stephenson, and S. C. Taylor, Organometal. Chem. **370** (1989) 97-109. J.
- 229 T. I. Odiaka, J. Chem. Soc., Dalton Trans. (1989) 561-5.
- 230 A. J. Pearson, S. L. Blystone, H. Nar, A. A. Pinkerton, B. A.Roden, and Y. Yoon, J. Am. Chem. Soc. 111 (1989) 134-44.
 231 A. J. Pearson and M. P. Burello, J. Chem. Soc., Chem. Comm.
- (1989) 1332-3.
- 232 H. Ahmed, D. A. Brown, N. J. Fitzpatrick, and W. K. Glass, Inorg. Chim. Acta 164 (1989) 5-6.
- 233 I. Kovács, A. Sisak, F. Ungváry, and L. Markó,
- Organometallics 8 (1989) 1873-7. 234 T. A. Shackleton and M. C. Baird, Organometallics 8 (1989) 2225-32.
- 235 J. J. Turner, M. Poliakoff, and M. A. Healy, Pure Appl. Chem. 61 (1989) 787-94.
- 236 J. N. Moore, P. A. Hanson, and R. M. Hochstrasser, J. Am. Chem. Soc. 111 (1989) 4563-6.
- 237 G. Thoma and B. Giese, Tetrahedron Lett. 30 (1989) 2907-10.
- 238 M. P. Castellani and D. R. Tyler, Organometallics 8 (1989) 2113-20.
- 239 C. Roger, M. J. Tudoret, V. Guerchais, and C. Lapinte, J. Organometal. Chem. 365 (1989) 347-50.
- 240 N. Hu, G. Nie, Z. Jin, and W. Chen, J. Organometal. Chem. 377 (1989) 137-43.
- 241 G. Nie, N. Hu, Z. Jin, and W. Chen, Yingyong Huaxue 6 (1989) 5-10; cf. Chem. Abstr. 112:139381z.

- 242 Y. Zhen, W. G. Geighery, C.-K. Lai, and J. D. Atwood, J. Am. Chem. Soc. 111 (1989) 7832-7.
- 243 G. Cerveau, C. Chuit, R. J. P. Corriu, L. Gerbier, and C. Reye, Phosphorus, Sulfur, Silicon Relat. Elem. 42 (1989) 115 - 21.
- 244 C.-K. Lai, W. G. Feighery, Y. Shen, and J. D. Atwood, Inorg. Chem. 28 (1983) 3923-38.
- 245 A. Wong, R. L. Morgan II, J. M. Golder, G. E. Quimbita, and R. V. Pawlick, Organometallics 8 (1989) 844-6.
- 246 D. J. Liston, Y. J. Lee, W. R. Scheidt, and C. A. Reed, J. Am. Chem. Soc. 111 (1989) 6643-8.
- 247 N. C. Norman and P. M. Webster, Z. Naturforsch., B: Chem. 5022 🍋 (2989) 92-3.
- 248 S. Hajela, E. Rosenberg, R. Gobetto, L. Milone, and D. Osella, J. Drganometal. Chem. 377 (1989) 85-8.
- 249 U. Wachtler, W. Malisch, E. Kolba, and J. Matreux, J. Organometal. Chem. 363 (1989) C36-4D.
- 250 S. R. Berryhill and R. J. P. Corriu, J. Organometal. Chem. 370 (1989) Cl-4.
- 251 J. Cervantes, S. P. Vincenti, R. N. Kapoor, and K. H. Pannell, Organometallics & (1989) 744-8.
- 252 N. Auner, J. Grobe, T. Schafer, B. Krebs, and M. Dartmann, J. Organometal. Chem. 363 (1989) 7-23.
- 253 K. H. Pannell, J. M. Rozell, Jr., and C. Hernandez, J. Am. Chem. Soc. 111 (1989) 4482-5.
- 254 H. Tobita, K. Ueno, and H. Ogino, Bull. Chem. Soc. Jpn. 61 (1988) 2797-804.
- 255 K. H. Pannell, L. J. Wang, and J. M. Rozell, Organometallics 8 (1989) 550-2.
- 256 E. Hengge, M. Eibl, and F. Schrank, J. Organometal. Chem. 369 (1989) C23-6.
- 257 D. Lei and M. J. H. Smith, J. Chem. Soc., Chem. Comm. (1989) 1211-3.
- 258 L. Carlton, G. Pattrick, and N. J. Coville, Inorg. Chim. Acta 160 (1989) 65-6.
- 259 X. Wang, Z. Cheng, X. Liu, J. Zhang, and S. Luo, Huaxue Xuebao, 47 (1989) 319-21; cf. Chem. Abstr. 112:139198v.
- 260 F. Liu, J. Wang, R. Wang, H. Wang, and X. Yao, J. Organometal. Chem. 371 (1989) 35-41. 261 M. F. Lappert, M. J. McGeary, and R. V. Parish, Organometal. Chem. 373 (1989) 107-17.
- J.
- 262 J. Zakrzewski, J. Organometal. Chem. 359 (1989) 215-8.
 263 D. Sellmann, E. Licht, M. Moll, and F. Knoch, Z. Naturforsch., B: Chem. Sci. 44 (1989) 429-36.
- 264 H. Nakazawa, Y. Kadoi, and K. Miyoshi, Organometallics 8 (1989) 2851-6.
- 265 H. Nakazawa, Y. Kadoi, T. Mizuta, K. Miyoshi, and H. Yoneda, J. Organometal. Chem. 366 (1989) 333-42.
- 266 H. Nakazawa, M. Sone, and K. Miyoshi, Organometallics 8 (1989) 1564-6.
- 267 E. Niecke, J. Hein, and M. Nieger, Organometallics 8 (1989) 2290-1.
- 268 L. Weber, G. Meine, R. Boese, and N. Niederprum, Z.
- Naturforsch., B: Chem. Sci. 43 (1988) 715-21. 269 L. Weber, M. Frebel, and R. Boese, Organometallics 8 (1989)
- 1718-22.
- 270 M.-T. Garland and D. Grandjean, Bull. Soc. Sci. Bretagne 59 (1988) 77-93; cf. Chem. Abstr. 112:98747c.
- 271 M.-T. Garland and D. Grandjean, Bull. Soc. Sci. Bretagne 59 (1988) 95-109; cf. Chem. Abstr. 112:198689d.
- 272 J. Ruiz, M.-T. Garland, E. Romain, and D. Astruc, J.

Organometal. Chem. 377 (1989) 309-26.

- 273 E. Hey, S. B. Wild, S. G. Bott, and J. L. Atwood, Z.
- Naturforsch., B: Chem. Sci. 44 (1989) 615-7. 274 E. Hey, A. C. Willis, and S. B. Wild, Z. Naturforsch., B: Chem. Sci. 44 (1989) 1041-6.
- 275 G. T. Crisp, G. Salem, S. B. Wild, and F. S. Stephens, Organometallics 8 (1989) 2360-7.
- 276 G. Salem and S. B. Wild, J. Organometal. Chem. **370** (1989) 33-41.
- 277 E. W. Abel, S. R. Allen, and B. Khandelwal, J. Chem. Soc., Dalton Trans. (1989) 885-8.
- 278 H. Schumann, J. M. M. Smits, and P. T. Beurskens, J. Crystallogr. Spectrosc. Res. 19 (1989) 1033-9; cf. Chem. Abstr. 112:149371k.
- 279 L. Weber, D. Bungardt, A. Müller, and H. Bögge, Organometallics 8 (1989) 2800-4.
- 280 A. M. Barr, M. D. Kerlogue, N. C. Norman, and L. J. Farrugia, Polyhedron 8 (1989) 2495-505.
- 281 R. P. Korswagen, P. Wulknitz, and M. I. Ziegler, Bol. Soc. Quim. Peru 55 (1989) 133-42; cf. Chem. Abstr. 112:179377j.
- 282 P. V. Bonnesen, C. L. Puckett, R. V. Honeychuck, and W. H. Hersh, J. Am. Chem. Soc. 111 (1989) 6070-81.
- 283 A. Shaver, I. S. Butler, and J. P. Gao, Organometallics 8 (1989) 2079-80.
- 284 M. A. El-Hinnawi, A. M. Al-Ajlouni, J. S. AbuNasser, A. K. Powell, and H. Vahrenkamp, J. Organometal. Chem. 359 (1989) 79-86.
- 285 M. A. El-Hinnawi, M. L. Sumadi, F. T. Esmadi, I. Jibril, W. Imhof, and G. Huttner, J. Organometal. Chem. 377 (1989) 373-81.
- 286 M. J. M. Campbell, E. Morrison, V. Rogers, P. K. Baker, D. C. Povey, and G. W. Smith, Polyhedron 8 (1989) 2371-8.
- 287 M.-H. Desbois and D. Astruc, Angew. Chem. 101 (1989) 459-60. 288 N. A. Parpiev, M. T. Toshev, Kh. B. Dustov, G. G.
- Aleksandrov, S. D. Alekseeva, and A. I. Nekhaev, Dokl. Akad. Nauk UzSSR (1988) 43-5; cf. Chem. Abstr. 111:39527n.
- 289 A. J. Blake, R. D. Crofts, G. Reid, and M. Schroeder, J. Organometal. Chem. 359 (1989) 371-8.
- 290 M. L. Steigerwald, Chem. Mater. 1 (1989) 52-7.
- 291 L. Colombo, F. Ulgheri, and L. Prati, Tetrahedron Lett. 30 (1989) 6435-6.
- 292 J. Okuda, Chem. Ber. 122 (1989) 1259-60.
- 293 L. D. Field, T. W. Hambley, C. M. Lindall, and A. F. Masters, Polyhedron 8 (1989) 2425-30.
- 294 P. D. Robinson, L. V. Dunkerton, A. Pandey, and C. C. Hinckley, Acta Crystallogr., Sect. C: Cryst. Struct. Commun. C45 (1989) 587-91.
- 295 J. du Toit, D. C. Levendis, J. C. A. Boeyens, M. S. Loonat, L. Carlton, W. Pickl, and N. J. Coville, J. Organometal. Chem. 368 (1989) 339-50.
- 296 K. E. Du Plooy, C. F. Marais, L. Carlton, R. Hunter, J. C. A. Boeyens, and N. J. Coville, Inorg. Chem. 28 (1989) 3855-60.
- 297 T. Yu. Orlova, V. N. Setkina, P. V. Petrovskii, A. I. Yanovskii, A. S. Batsanov, and Yu. T. Struchkov, Metalloorg. Khim. 1 (1988) 1327-33; cf. Chem. Abstr. 112:56206v.
- 298 C. Lo Sterzo, M. M. Miller, and J. K. Stille, Organometallics 8 (1989) 2331-7.
- 299 H. Tobita, H. Habazaki, M. Shimoi, and H. Ogino, Chem. Lett. (1988) 1041-4.
- 300 J. A. Heppert, T. J. Boyle, and F. Takusagawa, Organometallics 8 (1989) 461-7.

- 301 G. E. Herberich, B. Hessner, and D. P. J. Köffer J. Organometal. Chem. 362 (1989) 243-57.
- 302 R. Mageswaran and N. J. Fitzpatrick, J. Natl. Sci. Counc. Sri
- Joz K. Mageswaran and N. J. Fitzpatrick, J. Natl. Sci. Counc. Sri Lanka, 15 (1987) 47-59; cf. Chem. Abstr. 112:7670h.
 303 M. E. Giuseppetti-Dery, B. E. Landrum, J. L. Shibley, and A. R. Cutler, J. Organometal. Chem. 378 (1989) 421-35.
 304 M. E. Giuseppetti, B. E. Landrum, J. L. Shibley, and A. R. Cutler, Report (1988) TR-3; Order No. AD-A203253; cf. Chem. Abstr. 112:98759h.
- 305 L. Weber, M. Frebel, and R. Boese, New J. Chem. 13 (1989) 303-8.
- 306 T. C. Forschner and A. R. Cutler, J. Organometal. Chem. 361 (1989) C41-5.
- 307 S. A. Levitre, A. R. Cutler, and T. C. Forschner, Organometallics 8 (1989) 1133-8.
- 308 H. Y. Liu, M. Rahman, L. L. Koh, K. Eriks, W. P. Giering, and A. Prock, Acta Crystallogr., Sect. C: Cryst. Struct. Commun. C45 (1989) 1683-6.
- 309 R. E. Marsh, Inorg. Chim. Acta 157 (1989) 1-2.
- 310 L. E. Nance, H. J. Will, D. B. MacQueen, J. M. Garrison, and J. M. Nicklaw, Magn. Reson. Chem. 27 (1989) 895-6.
- 311 H. Y. Liu, M. N. Golovin, D. A. Fertal, A. A. Tracey, K. Eriks, W. P. Giering, and A. Prock, Organometallics 8 (1989) 1454-8.
- 312 M. M. Rahman, H. Y. Liu, K. Eriks, A. Prock, and W. P. Organometallics 8 (1989) 1-7. Giering,
- 313 L. I. Leont'eva, D. N. Kravtsov, and E. G. Perevalova, Metalloorg. Khim. 1 (1988) 802-8; cf. Chem. Abstr. 111:233101j.
- 314 M. Akita, T. Oku, and Y. Moro-oka, J. Chem. Soc., Chem. Comm. (1989) 1790-2.
- 315 E. J. Crawford, P. K. Hanna, and A. R. Cutler, J. Am. Chem. Soc. 111 (1989) 6891-3.
- 316 M. Akita, T. Kawahara, M. Terada, N. Kakinuma, and Y. Moro-oka, Organometallics 8 (1989) 687-93.
- 317 M. R. J. Piper, G. R. Stephenson, R. J. K. Taylor, C. Breen, J. S. Brooks, and G. L. Williams, J. Chem. Soc., Chem. Comm. (1989) 1798-1800.
- 318 M. Akita, A. Kondoh, and Y. Moro-oka, J. Chem. Soc., Dalton Trans. (1989) 1083-7.
- 319 M. Akita, A. Kondoh, and Y. Moro-oka, J. Chem. Soc., Dalton Trans. (1989) 1627-30.
- Organometallics 8 (1989) 1572-3. 320 M. Brookhart and Y. Liu,
- 321 G. Bashiardes, S. P. Collingwood, S. G. Davies, and S. C. Preston, 364 89 C29-32.
- 322 G. Bashiardes and S. G. Davies, Tetrahedron Lett. 29 (1988) 6509-12.
- 323 S. G. Davies, D. Middlemiss, A. Naylor, and M. Wills, Tetrahedron Lett. 30 (1989) 587-90.
- 324 S. G Davies, D. Middlemiss, N. Naylor, and M. Wills, Tetrahedron Lett. 30 (1989) 2971-4.
- 325 P. W. Ambler and S. G. Davies, Tetrahedron Lett. 29 (1988) 6983-4.
- 326 P. W. Ambler and S. G. Davies, Tetrahedron Lett. 29 (1988) 6979-82.
- 327 R. L. Trace and W. M. Jones, J. Organometal. Chem. 376 (1989) 103-13.
- 328 M. Kobayashi and J. D. Wuest, Organometallics 8 (1989) 2843-50.
- 329 M. Moran, C. Pascual, I. Cuadrado, J. R. Masaguer, and J. Losada, J. Organometal. Chem. 363 (1989) 157-65.

- 330 N. G. Connelly and I. Manners, J. Chem. Soc., Dalton Trans. (1989) 283-8.
- 331 J. R. Moss and L. G. Scott, J. Organometal. Chem. 363 (1989) 351-70.
- 332 G. C. A. Bellinger, H. B. Friedrich, and J. R. Moss, J. Organometal. Chem. 366 (1989) 175-86.
- 333 J. K. Stille, C. Smith, O. P. Anderson, and M. M. Miller, Organometallics 8 (1989) 1040-7.
- 334 A. Leboeuf, J. C. Leblanc, and C. Moise, J. Organometal. Chem. 372 (1989) 391-6.
- 335 M. Brookhart, R. C. Buck, and D. Danielson III, J. Am. Chem. Soc. 111 (1989) 567-74.
- 336 R. S. Herrick, A. B. Frederick, and R. R. Duff, Jr., Organometallics 8 (1989) 1120-1.
- 337 M. E. Wright, J. F. Hoover, R. S. Glass, and V. W. Day, J. Organometal. Chem. 364 (1989) 373-9.
- 338 M. E. Raseta, S. A. Cawood, and M. E. Welker, J. Am. Chem. Soc. 111 (1989) 8268-70.
- 339 G.-H. Lee, S.-M. Peng, G.-M. Yang, S.-F. Lush, and R.-S. Liu, Organometallics 8 (1989) 1106-11.
- 340 H. A. Erlacher, M. M. Turnbull, H. Kai, and M. Rosenblum, J. Org. Chem. 54 (1989) 3012-15.
- 341 C. P. Casey and L. J. Smith, Organometallics 8 (1989) 2288-90.
- 342 B. K. Blackburn, L. Bromley, S. G. Davies, M. Whittaker, and R. H. Jones, J. Chem. Soc., Perkin Trans. 2 (1989) 1143-56.
 343 H. Brunner, K. Fisch, P. G. Jones, and J. Salbeck, Angew.
- 343 H. Brunner, K. Fisch, P. G. Jones, and J. Salbeck, Angew. Chem. 101 (1989) 1558-9.
- 344 G. Schmid and T. Rohling, J. Organometal. Chem. 375 (1989) 21-31.
- 345 I. R. Butler, J. E. Elliott, and J. Houde, Jr., Can. J. Chem. 67 (1989) 1308-11.
- 346 R. H. Philip, Jr., D. L. Reger, and A. M. Bond, Organometallics 8 (1989) 1714-8.
- 347 R. Kergoat, M. M. Kubicki, L. C. Gomes de Lima, H. Scordia, J. E. Guerchais, and P. L'Haridon, J. Organometal. Chem. 367 (1989) 143-60.
- 348 V. N. Kalinin, T. V. Rozantseva, Pl V. Petrovskii, A. S. Batsanov, and Yu. T. Struchkov, J. Organometal. Chem. 372 (1989) 287-93.
- 349 P. M. Fritz, K. Polborn, M. Steimann, and W. Beck, Chem. Ber. 122 (1989) 889-91.
- 350 M. G. L. Mirabelli, P. J. Carroll, and L. G. Sneddon, J. Am. Chem. Soc. 111 (1989) 592-7.
- 351 G. A. Artamkina, A. Yu. Mil'chenko, I. P. Beletskaya, and O. A. Reutov, Metalloorg. Khim. 1 (1988) 908-12; cf. Chem. Abstr. 112:7659m.
- 352 G. A. Artamkina, A. Yu. Mil'chenko, I. P. Beletskaya, and O. A. Reutov, Izv. Akad. Nauk SSSR, Ser. Khim. (1988) 2826-32; cf. Chem. Abstr. 111:56714p.
- 353 A. D. Hunter and A. B. Szigety, Organometallics 8 (1989) 2670-9.
- 354 A. D. Hunter, Organometallics 8 (1989) 1118-20.
- 355 A. D. Hunter and J. L. McLernon, Organometallics 8 (1989) 2679-88.
- 356 G. B. Richter-Addo and A. D. Hunter, Inorg. Chem. 28 (1989) 4063-5.
- 357 M. N. Mattson, J. P. Bays, J. Zakutansky, V. Stolarski, and P. Helquist, J. Org. Chem. 54 (1989) 2467-8.
- 358 V. Guerchais, J.-Y. Thepot, and C. Lapinte, J. Chem. Soc., Chem. Comm. (1989) 1554-6.

- 359 G. N. Glavee, Y. Su. R. A. Jacobson, and R. J. Angelici, Inorg. Chim. Acta 157 (1989) 73-84.
- 360 G. N. Glavee and R. J. Angelici, J. Am. Chem. Soc. 111 (1989) 3598-603.
- 361 C. Roger and C. Lapinte, J. Chem. Soc., Chem. Comm. (1989) 1598-600.
- 362 M. Brookhart, W. B. Studabaker, M. B. Humphrey, and G. R. Husk, Organometallics 8 (1989) 132-40.
- 363 M. Brookhart and R. C. Buck, J. Organometal. Chem. 370 (1989) 111-27.
- 364 M. Brookhart and Y. Liu, Organometallics 8 (1989) 1569-72.
- 365 M. Brookhart and R. C. Buck, J. Am. Chem. Soc. 111 (1989) 559-67.
- 366 S. K. Zhao, C. Knors, and P. Helquist, J. Am. Chem. Soc. 111 (1989) 8527-8.
- 367 P. Seutet and P. Helquist, Tetrahedron Lett. 29 (1988) 4921-2.
- 368 J. F. Booysen, M. W. Bredenkamp, and C. W. Holzapfel, Synth. Commun. 19 (1989) 1437-48.
- 369 J. F. Booysen, M. W. Bredenkamp, and C. W. Holzapfel, Synth. Commun. 19 (1989) 1449-62.
- 370 A. K. Begum, K. H. Chu, T. S. Coolbaugh, M. Rosenblum, and X. Y. Zhu, J. Am. Chem. Soc. 111 (1989) 5252-9.
- 371 M. H. Cheng, Y. J. Wu, S. L. Wang, and R. S. Liu, J. Organometal. Chem. 373 (1989) 119-27.
- 372 W. Yongskulrote, J. M. Bramlett, C. A. Mike, B. Durham, and N. T. Allison, Organometallics 8 (1989) 556-8. 373 G. E. Herberich, B. J. Dunne, and B. Hessner, Angew. Chem.
- Int. Ed. Engl. 28 (1989) 737-8.
- 374 G. E. Herberich, I. Hausmann, and N. Klaff, Angew. Chem. Int. Ed. Engl. 28 (1989) 319-20.
- 375 G. E. Herberich, U. Buschges, B. A. Dunne, B. Hessner, N. Klaff, D. P. J. Köffer, and K. Peters, J. Organometal. Chem. 372 (1989) 53-60.
- 376 J. H. Davis, Jr., E. Sinn, and R. N. Grimes, J. Am. Chem. Soc. 111 (1989) 4776-84.
- 377 M. D. Attwood, K. K. Fonda, R. N. Grimes, G. Brodt, D. Hu, U. Zenneck, and W. Siebert, Organometallics 8 (1989) 1300-3.
- 378 A. A. Erdman, Z. P. Zubreichuk, N. A. Maier, and Yu. A. Ol'dekop, Vestsi Akad. Nauk BSSR, Ser. Khim. Nauk, (1989) 109-10; cf. Chem. Abstr. 112:139422p.
- 379 K. Shelly, C. B. Knobler, and M. F. Hawthorne, New J. Chem. 12 (1988) 317-19.
- 380 N. Kuhn, E.-M. Horn, and E. Zauder, Inorg. Chim. Acta 149 (1988) 163-4.
- 381 N. Kuhn, M. Schulten, E. Zauder, N. Augart, and R. Boese, Chem. Ber. 122 (1989) 1891-6.
- 382 N. Kuhn, E.-M. Horn, R. Boese, and N. Augart, Angew. Chem. 101 (1989) 354-5.
- 383 N. Kuhn, E.-M. Horn, R. Boese, and D. Bläser, Chem. Ber. 122 (1989) 2275-7.
- 384 R. M. G. Roberts, J. Silver, and A. S. Wells, Inorg. Chim. Acta 157 (1989) 45-50.
- 385 P. Lemoine, J. Organometal. Chem. 359 (1989) 61-9.
- 386 O. J. Scherer, T. Brück, and G. Wolmershäuser, Chem. Ber. 122 (1989) 2049-54.
- 387 M. C. Kerins, N. J. Fitzpatrick, and M. T. Nguyen, Polyhedron 8 (1989) 1135-8,
- 388 D. Hu, H. Schäufele, H. Pritzkow, and U. Zenneck, Angew. Chem. 101 (1989) 929-31.

- 389 M. J. Begley, S. G. Puntambekar, and A. H. Wright, J. Organometal. Chem. 362 (1989) Cl1-14.
- 390 J. Okuda, J. Organometal. Chem. 375 (1989) Cl3-6.
- 391 M. Lacoste, H. Rabaa, D. Astruc, A. Le Beuze, J.-Y. Saillard, G. Precigoux, C. Courseille, N. Ardoin, and W. Bowyer, Organometallics 8 (1989) 2233-42.
- 392 J. R. Hamon and D. Astruc, Organometallics 8 (1989) 2243-7.
- 393 J. R. Hamon, J.-Y. Saillard, L. Toupet, and D. Astruc, J. Chem. Soc., Chem. Comm. (1989) 1662-3.
- 394 R. H. Dubois, M. J. Zaworotko, and P. S. White, J. Organometal. Chem. 362 (1989) 155-61.
- 395 A. W. Coleman, A. J. Baskar, S. G. Bott, and J. L. Atwood, J. Coord. Chem. 17 (1988) 339-45.
- 396 M. A. Pomazanova, L. N. Novikova, N. A. Ustynyuk, and D. N. Kravtsov, Metalloorg. Khim. 2 (1989) 422-5; cf. Chem. Abstr. 112:139384c.
- 397 N. A. Ustynyuk, N. A. Pomazanova, L. N. Novikova, and D. N. Kravtsov, Metalloorg. Khim. 2 (1989) 204; cf. Chem. Abstr. 112:77459v.
- 398 F. Moulines and D. Astruc, J. Chem. Soc., Chem. Comm. (1989) 614-5.
- 399 S. L. Grundy, A. R. H. Sam, and S. R. Stobart, J. Chem. Soc., Perkin Trans. 1 (1989) 1663-73.
- 400 I. I. Oleinik, P. P. Kun, V. V. Litvak, and V. D. Shteingarts, Zh. Org. Khim, 23 (1987) 2580-6; cf. Chem. Abstr. 111:194963v.
- 401 A. S. Abd-el-Aziz, A. Piorko, C. C. Lee, and R. G.Sutherland, Can J. Chem. 67 (1989) 1618-23.
- 402 C. C. Lee, C. H. Zhang, A. S. Abd-el-Aziz, A. Piorko, and R. G. Sutherland, J. Organometal. Chem. **364** (1989) 217-29. 403 A. J. Pearson, J. G. Park, S. H. Yang, and Y. H. Chuang,
- J. Chem. Soc., Chem. Comm. (1989) 1363-4.
- 404 R. M. Moriarty, U. S. Gill, and Y. Y. Ku, Polyhedron 7 (1988) 2685-94.
- 405 A. Piorko, A. S. Abd-el-Aziz, C. C. Lee, and R. G.
- Sutherland, J. Chem. Soc., Perkin Trans. 1 (1989) 469-75. 406 R. G. Sutherland, C. H. Zhang, A. Piorko, and C. C. Lee, Can
 - J. Chem. 67 (1989) 137-42.
- 407 R. C. Cambie, S. J. Janssen, P. S. Rutledge, and W. D. Woodgate, J. Organometal. Chem. 359 (1989) C14-6.
- 408 R. G. Sutherland, A. S. Abd-el-Aziz, A. Piorko, U. S. Gill,
- and C. C. Lee, J. Heterocycl. Chem. 25 (1988) 1107-10. 409 R. G. Sutherland, A. Piorko, C. C. Lee, S. H. Simonsen, and V. M. Lynch, J. Heterocycl. Chem. 25 (1988) 1911-6.
- 410 A. Maciejewski, A. Jaworska-Augustyniak, D. Radocki, R. G. Sutherland, and A. Piorko, Collect. Czech. Chem. Commun. 54 (1989) 2171-5.
- 411 S. Ronco, G. Ferraudi, E. Roman, and S. Hernandez, Chim. Acta 161 (1989) 183-6. Inora.
- 412 D. R. Chrisope, K. M. Park, and G. B. Schuster, J. Am. Chem. Soc. 111 (1989) 6195-201.
- 413 J. Heck and W. Massa, J. Organometal. Chem. 376 (1989) C15-19.
- 414 D. R. Chrisope and G. B. Schuster, Organometallics 8 (1989) 2737-9.
- 415 E. Roman, M. Barrera, S. Hernandez, and C. Gianotti, NATO ASI Ser., Ser. C 257 (1989) 327-43; cf. Chem. Abstr. 112:108318e.
- 416 V. Desobry, and H. O. Doggweiler, Eur. Pat. Appl. EP 314,618; cf. Chem. Abstr. 111:195085x.
- 417 K. Kitamura, Jpn. Kokai Tokkyo Koho JP 01,152,109; cf. Chem.

Abstr. 112:45733p.

- 418 S. Imahashi, Jpn. Nokai Tokkyo Noho JP D1, 54,440; cf. Chem. Abstr. 112:14281k.
- 419 K. Meier and E. Losert, Eur. Pat. Appl. EP 295,211; cf. Chem. Abstr. 11:205474q.
- 420 S. P. Solodovnikov, L. M. Bronshtein, L. S. Shilovtseva, Yu. A. Kabachii, and P. M. Valetskii, Metalloorg. Khim. 1 (1988) 856-9.
- 421 J. M. Merkert, W. E. Geiger, J. H. Davis, Jr., M. T. Attwood, and R. N. Grimes, Organometallics 8 (1989) 1580-1.
 422 A. S. Abd-el-Aziz, A. Piorko, A. S. Baranski, and R. G.
- 422 A. S. ADd-el-Aziz, A. Piorko, A. S. Baranski, and R. G. Sutherland, Synth. Commun. **19** (1989) 1865-70.
- 423 J. Ruiz, M. Lacoste, and D. Astruc, J. Chem. Soc., Chem. Comm. (1989) 813-14.
- 424 J. Ruiz and D. Astruc, J. Chem. Soc., Chem. Comm. (1989) 815-16.
- 425 J. Ruiz, V. Guerchais, and D. Astruc, J. Chem. Soc., Chem. Comm. (1989) 812-13.
- 426 M. H. Desbois, D. Astruc, J.Guillin, and F. Varret, Organometallics 8 (1989) 1848-51.
- 427 R. Q. Bligh, R. Moulton, A. J. Bard, A. Piorko, and R. G. Sutherland, Inorg. Chem. 28 (1989) 2652-9.
- 428 M. H. Desbois and D. Astruc, Organometallics 8 (1989) 1841-7.
- 429 M. H. Desbois, D. Astruc, J. Guillin, F. Varret, A. X. Trautwein, and G. Villeneuve, J. Am. Chem. Soc. 111 (1989) 5800-9.
- 430 J. Guillin, M. H. Desbois, M. Lacoste, D. Astruc, and F. Verret, J. Phys., Colloq. C8 (1988) 837-8; cf. Chem. Abstr. 111:107550s.
- 431 G. E. Herberich and W. Klein, Chem. Ber. 122 (1989) 2125-8.
- 432 D. Mandon and D. Astruc, J. Organometal. Chem. **369** (1989) 383-92.
- 433 S. Abdul-Rahman, A. Houlton, R. M. G. Roberts, and J. Silver, J. Organometal. Chem. **359** (1989) 331-41.
- 434 M. D. Ward and J. C. Calabrese, Organometallics 8 (1989) 593-602.
- 435 M. D. Clerk, K. C. Sturge, M. J. Zaworotko, and P. S. White, J. Organometal. Chem. 368 (1989) C33-7.
- 436 D. Mandon and D. Astruc, Organometallics 8 (1989) 2372-7.
- 437 P. Mathur and B. H. S. Thimmappa, Inorg. Chim. Acta 148 (1988) 119-22.
- 438 D. Bankston, J. Org. Chem. 54 (1989) 2003-6.
- 439 J. M. Cassidy and K. H. Whitmire, Inorg. Chem. 28 (1989) 1432-4.
- 440 S. G. Anema, K. M. Mackay, and B. K. Nicholson, Inorg. Chem. 28 (1989) 3158-64.
- 441 S. Luo and K. H. Whitmire, J. Organometal. Chem. 376 (1989) 297-310.
- 442 P. J. Krusic, R. T. Baker, J. C. Calabrese, J. R. Morton, K.F. Preston, and Y. Le Page, J. Am. Chem. Soc. 111 (1989) 1262-7.
- 443 L. H. Randall and A. J. Carty, Inorg. Chem. 28 (1989) 1194-6.
- 444 A. J. Carty, C. A. Fyfe, M. Lettinga, S. Johnson, and L. H. Randall, Inorg. Chem. 28 (1989) 4120-4.
- 445 P. B. Hitchcock, T. J. Madden, and J. F. Nixon, J. Chem. Soc., Chem. Comm. (1989) 1660-1.
- 446 E. J. Wucherer, M. Tasi, B. Hansert, A. K. Powell, M. T. Garland, J.-P. Halet, J.-Y. Saillard, and H. Vahrenkamp, Inorg. Chem. 28 (1989) 3564-72.

- 447 M. G. Richmond and C. U. Pittman, Jr., J. Mol. Catal. 53 (1989) 79-103.
- 448 L. Weber, E. Lücke, and R. Boese, Chem. Ber. 122 (1989) 809-13.
- 449 L. Song, R. Wand, Y. Li, H. Wang, and J. Wang, Youji Huaxue 9 (1989) 512-17; cf. Chem. Abstr. 113:16848v.
- 450 D. Buchholz, G. Huttner, L. Zsolnai, and W. Imhof, J. Organometal. Chem. 377 (1989) 25-41.
- 451 C. Glidewell, R. J. Lambert, M. B. Hursthouse, and M. Motevalli, J. Chem. Soc., Dalton Trans. (1989) 2016-4. 452 X. Wu, K. S. Bose, E. Sinn, and B. A. Averill, Organometallics 8 (1989) 251-3.

- 453 D. Seyferth, G. B. Womack, C. M. Archer, and J. C. Dewan, Organometallics 8 (1989) 430-2.
- 454 D. Seyferth, G. B. Womack, C. M. Archer, J. P. Fackler, Jr., and D. O. Marler, Organometallics 8 (1989) 443-50. 455 L. Song, J. Liu, R. Liu, and J. Wang, Gaodeng Xuexiao Huaxue
- Xuebao 9 (1988) 802-7; cf. Chem. Abstr. 111:214644x.
- 456 L. Song, R. Wang, Q. Hu, and H. Wang, Jiegou Huaxue 8 (1989) 115-8; cf. Chem. Abstr. 112:129536q.
- 457 L. Song, J. Liu, and J. Wang, Youji Huaxue 9 (1989) 51-4; cf. Chem. Abstr. 111:78294d.
- 458 L. Song, Q. Hu, Z. Zhou, and L. Liu, Jiegou Huaxue 8 (1989) 197-201; cf. Chem. Abstr. 112:129559z.
- 459 D. Seyferth, D. P. Ruschke, W. M. Davis, M. Cowie, and A. D. Hunter, Organometallics 8 (1989) 836-9.
- 460 T. Fässler and G. Huttner, J. Organometal. Chem. 376 (1989) 367-84.
- 461 L. Song and Q. Hu, Wuji Huaxue 4 (1988) 35-42; cf. Chem. Abstr. 111:107983k.
- 462 S. Aime, M. Botta, O. Gambino, R. Gobetto, and D. Osella, J. Chem. Soc., Dalton Trans. (1989) 1277-81.
- 463 X. Yao, R. Wang, H. Wang, L. Song, Q. Hu, and J. Wang, Acta Crystallogr., Sect. C: Cryst. Struct. Commun. C45 (1989) 575-9.
- 464 A. Darchen, E. K. Lhadi, and H. Patin, J. Organometal. Chem. 363 (1989) 137-49.
- 465 H. Patin, A. Darchen, and E. K. Lhadi, J. Organometal. Chem. 375 (1989) 91-100.
- 466 H. Patin, A. Le Rouzic, E. K. Lhadi, A. Darchen, A. Mousser,
- and D. Grandjean, J. Organometal. Chem. 375 (1989) 101-14. 467 A. Darchen, E. K. Lhadi, and H. Patin, New J. Chem. 12 (1988) 377-85.
- 468 B. Dadamoussa, A. Darchen, P. L'Haridon, C. Larpent, H. Patin, and J.-Y. Thepot, Organometallics 8 (1989) 564-6.
- 469 J. L. M. Dillen, M. M. van Dyk, and S. Lotz, Dalton Trans. (1989) 2199-203. J. Chem. Soc.,
- 470 M. M. van Dyk, P. H. Van Rooyen, and S. Lotz, Inorg. Chim. Acta 163 (1989) 167-72.
- 471 H. G. Raubenheimer, L. Linford, and A. van A. Lombard, Organometallics 8 (1989) 2062-3.
- 472 A. J. Banister, I. B. Gorrell, W. Clegg, and K. A. Jorgensen, J. Chem. Soc., Dalton Trans. (1989) 2229-33.
- 473 J. Chen, G. Lei, Z. Zhang, and Y. Tang, Huaxue Xuebao 47 (1989) 31-6; cf. Chem. Abstr. 112:77457t.
- 474 L. Song, Z. Wang, and J. Wang, Acta Chim. Sin. (Engl. Ed.) (1989) 130-5; cf. Chem. Abstr. 112:139514v.
- 475 R. Wang, L. Song, H. Wang, Z. Wang, and J. Wang, Acta. Chem. Sin. (Engl. Ed.) (1989) 16-23; cf. Chem. Abstr. 112:14524s.
- 476 M. Cowie, R. L. DeKock, T. R. Wagenmaker, D. Seyferth, R. S. Henderson, and M. K. Gallagher, Organometallics 8 (1989)

119-32.

- 477 I. L. Eremenko, A. A. Pasynskii, A. S. Katugin, V. R. Zalmanovich, B. Orazsakhatov, S. A. Sleptsova, A. I. Nekhaev, V. V. Kaverin, O. G. Ellert et al., J. Organometal. Chem. 365 (1989) 325-40.
- 478 P. Mathur, I. J. Mavunkal, and V. Rugmini, J. Organometal. Chem. 367 (1989) 243-8.
- 479 D. Chakrabarty, P. Mathur, I. J. Mavunkal, R. V. Pannikar, V. D. Reddy, and B. H. S. Thimmappa, Proc. Indian Natl. Sci. Acad., Part A 55 (1989) 342-6.
- 480 P. Mathur, I. J. Mavunkal, and A. R. Rheingold, J. Chem. Soc., Chem. Comm. (1989) 382-4.
- 481 P. Mathur, I. J. Mavunkal, and V. Rugmini, Inorg. Chem. 28 (1989) 3616-18.
- 482 T. Fässler, D. Buchholz, G. Huttner, and L. Zsolnai, J. Organometal. Chem. 369 (1989) 297-308.
- 483 F. Muller, G. van Koten, K. Vrieze, and D. Heijdenrijk, Inorg. Chim. Acta 158 (1989) 69-79.
- 484 F. Muller, G. van Koten, K. Vrieze, and D. Heijdenrijk, Organometallics 8 (1989) 33-40.
- 485 F. Muller, G. van Koten, K. Vrieze, Heijdenrijk, B. B. Krijnen, and C. H. Stam, Organometallics 8 (1989) 41-8.
- 4866 F. Muller, I. M. Han, G. van Roten, R. Vrieze, D. Beijdenrijk, R. L. De Jong, and M. C. Zoutberg, Inorg. Chim. Acta 158 (1989) 81-98.
- 487 F. Muller, I. M. Han, G. van Koten, K. Vrieze, D. Heijdenrijk, J. Van Mechelen, and C. H. Stam, Inorg. Chim. Acta 158 (1989) 99-108.
- 488 F. Muller, G. yan Roten, R. Vrieze, K. A. A. Duineyeld, D. Heijdenrijk, A. N. S. Mak, C. H. Stam, Organometallics 8 (1989) 1324-30.
- 489 E. Muller, G. van Katen, M. J. A. Kraakman, K. Vrieze, D. Heijdenrijk, and M. C. Zoutberg, Organometallics 8 (1989) 1331-9.
- 490 C. J. Elsevier, F. Muller, K. Vrieze, and R. Zoet, New J. Chem. 12 (1988) 571-9.
- 491 R. Bertoncello, M. Casarín, M. Dal Colle, G. Granozzí, G. Mattogno, F. Muller, U. Russo, and K. Vrieze, Inorg. Chem. 28 (1989) 4243-50.
- 492 V. Crocq, J.-C. Daran, and Y. Jeannin, J. Organometal. Chem. 373 (1989) 85-97.
- 493 C. A. Mirkin, K. L. Lu, G. L. Geoffroy, A. L. Rheingold, and D. L. Staley, J. Am. Chem. Soc. 111 (1989) 7279-81.
- 494 J. Suades, F. Dahan, and R. Mathieu, Organometallics 8 (1989) 842-4.
- 495 E. Cabrera, J.-C. Daran, and Y. Jeannin, Organometallics 8 (1989) 1811-9.
- 496 R. Yanez, J. Ros, X. Solans, M. Font-Altaba, and R. Mathieu, New J. Chem. 12 (1988) 589-94.
- 497 D. Lentz and ff. Michael, J. Organometal. Chem. 372 (1989) 109-15.
- 498 S. Aime, M. Botta, G. E. Hawkes, K. D. Sales, and L. Y. Lian, J. Organometal. Chem. 368 (1989) 331-8.
- 499 H. Lindenberger, R. Birk, O. Orama, G. Huttner, and H. Berke, Z. Naturforsch., B: Chem. Sci. 43 (1988) 749-57.
- 500 A. I. Nekhaev, M. A. Dzyubina, N. I. Dorokhina, G. N. Kuz'mina, and Yu. P. Sobolev, Izv. Akad. Nauk SSSR, Ser. Khim. (1988) 2292-7; cf. Chem. Abstr. 111:134413f. 501 N. Morita, C. Kabuto, and T. Asao, Bull. Chem. Soc. Jpn. 62
- (1989) 1677-8.

- 502 D. Braga, C. Gradella, and F. Grepioni, J. Chem. Soc., Dalton Trans. (1989) 1721-5.
- 503 C. A. Wilkie and B. Huttl, Appl. Organomet. Chem. 3 (1989) 157-63.
- 504 R. Calsou, R. Feurer, M. Larhrafi, and R. Morancho, J. Microsc. Spectrosc. Electron, 14 (1989) 11-22; cf. Chem. Abstr. 111:68217s.

- 505 M. S. Loonat, L. Carlton, J. C. A. Boeyens, and N. J. Coville, J. Chem. Soc., Dalton Trans. (1989) 2407-14.
 506 M. G. Cox, P. Soye, and A. R. Manning, J. Organometal. Chem. 369 (1989) C21-2.
- 507 P. Jutzi and J. Schnittger, Chem. Ber. 122 (1989) 629-32.
- 508 H. Tobita, Y. Kawano, and H. Ogino, Chem. Lett. (1989) 2155-8.
- 509 P. M. Treichel and E. K. Rublein, J. Organometal. Chem. 359 (1989) 195-203.
- 510 R. T. Weberg, R. C. Haltiwanger, and M. Rakowski DuBois, New J. Chem. 12 (1988) 361-71.
- 511 J. T. Spencer, J. A. Spencer, R. A. Jacobson, and J. G. Verkade, New J. Chem. 13 (1989) 275-91.
- 512 C. Caballero, J. A. Chavez, O. Göknur, I. Löchel, B. Nuber, H. Pfisterer, M. L. Ziegler, P. Alburguergue, L. Eguren, and R. P. Korswagen, J. Organometal. Chem. 371 (1989) 329-54.
- 513 M. V. Andreocci, M. Bossa, C. Cauletti, R. Paolesse, G. Ortaggi, T. Vondrak, and M. N. Piancastelli, Organometal. Chem. 366 (1989) 343-55.
- 514 M. Chen, J. Li, and G. Xu, Acta Chim. Sin. (Engl. Ed.) (1989) 317-23; cf. Chem. Abstr. 112:198712f.
- 515 T. Aase, M. Tilset, and V. D. Parker, Organometallics 8 (1989) 1558-63.
- 516 D. B. Jacobson, J. Am. Chem. Soc. **111** (1989) 1626-34. 517 C. P. Casey, M. S. Konings, and S. R. Marder, Polyhedron **7** (1988) 881-902.
- 518 J. A. Bandy, H. E. Bunting, M. H. Garcia, M. L. H. Green, S. R. Marder, M. E. Thompson, D. Bloor, P. V. Kolinsky, and R. J. Jones, Spec. Publ. - R. Soc. Chem. 69 (1989) 225-31; cf. Chem. Abstr. 111:221526p.
- 519 C. P. Casey, M. Crocker, P. C. Vosejpka, and A. L. Rheingold, Organometallics 8 (1989) 278-82.
- 520 N. C. Schroeder, R. Funchess, R. A. Jacobson, and R. J. Angelici, Organometallics 8 (1989) 521-9.
 521 L. Busetto, S. Bordoni, V. Zanotti, V. G. Albano, and D. Braga, Gazz. Chim. Ital. 118 (1988) 667-72.
- 522 L. Busetto, S. Bordoni, V. Zanotti, V. G. Albano, and D. Braga, NATO ASI Ser., Ser. C 269 (1989) 141-3; cf. Chem. Abstr. 112:158512j.
- 523 M. Etienne and J. E. Guerchais, J. Chem. Soc., Dalton Trans. (1989) 2187-92.
- 524 M. Etienne and L. Toupet, J. Chem. Soc., Chem. Comm. (1989) 1110-1.
- 525 B. E. Bursten, S. D. McKee, and M. S. Platz, J. Am. Chem. soc. 111 (1989) 3428-9.
- 526 G. H. Young, A. Wojcicki, M. Calligaris, G. Nardin, and N. Bresciani-Pahor, J. Am. Chem. Soc. 111 (1989) 6890-1.
- 527 H. H. Karsch, H. U. Reisacher, B. Huber, G. Müller, K. Joerg, and W. Malisch, New J. Chem. 13 (1989) 319-27.
 528 A. F. Hill, J. A. K. Howard, T. P. Spaniol, F. G. A. Stone, and J. Szameitat, Angew. Chem. 101 (1989) 213-4.
- 529 S. J. Crennell, D. D. Devore, S. J. B. Henderson, J. A. K. Howard, and F. G. A. Stone, J. Chem. Soc., Dalton Trans. (1989) 1363-74.

- 530 C. C. Tso and A. R. Cutler, Report TR-2 (1988); Order No. AS-A203025; cf. Chem. Abstr. 112:158491b.
- 531 R. Zoet, G. van Koten, F. Muller, K. Vrieze, M. Van Wijnkoop, K. Goubitz, C. J. G. Van Halen, and C. H. Stam, Inorg. Chim. Acta 149 (1988) 193-208.
- 532 R. Zoet, D. J. Elsevier, G. van Koten, P. Versioot, K. Vrieze, M. van Wijnkoop, C. A. Duineveld, K. Goubitz, D. Heijdenrijk, and C. H. Stam, Organometallics 8 (1989) 23-32.
- 533 F. Muller, G. van Koten, M. J. Kraakman, K. Vrieze, R. Zoet, K. A. A. Duineveld, D. Heijdenrijk, C. H. Stam, and M. C. Zoutberg, Organometallics 8 (1989) 982-91.
- 534 C. R. Caballero, L. Eguren, R. P. Korswagen, and M. L. Ziegler, Bol. Soc. Quim. Peru 55 (1989) 67-77; cf. Chem. Abstr. 112:158606t.
- 535 T. I. Knomenko, A. A. Kadushin, N. Kutyreva, Yu. Maksimov, V. Matveev, A. Slinkin, E. Fedorovskava, and V. N. khandozhko, J. Mol. Catal. 51 (1989) L9-14.
- 536 C. Bianchini, F. Laschi, D. Masi, C. Mealli, A. Meli, F. M. Ottaviani, D. M. Proserpio, M. Sabat, and P. Zanello, Inorg. Chem. 28 (1989) 2552-60.
- 537 H. A. Jenkins, S. J. Loeb, and D. W. Stephan, Inorg. Chem. 28 (1989) 1998-2003.
- 538 H. A. Jenkins and S. J. Loeb, Can. J. Chem. 67 (1989) 1230-5.
- 539 M. M. Harding, Deresbury Lab. [Rep.] DL/SCI/R 99-104; cf. Chem. Abstr. 111:184688v.
- 54D P. Braunstein, M. Anorr, A. Diripicobio, M. Diripicobio-Camellini, Angew. Chem. 101 (1989) 1414-6.
- 541 A. Casoli, A. Mangia, G. Predieri, and E. Sappa, J. Chromatogr. 447 (1988) 187-92.
- 542 D. Osella, G. Arman, M. Botta, R. Gobetto, F. Laschi, and P. Zanello, Organometallics 8 (1989) 620-9.
- 543 D. Osella, G. Arman, R. Gobetto, F. Laschi, and P. Zanello, Organometallics 8 (1989) 2689-95.
- 544 D. Lentz and H. Michael, Angew. Chem. 101 (1989) 330-1.
- 545 K. Jothimony, S. Vancheesan, and J. C. Kuriacose, J. Mol. Catal. 52 (1989) 297-300.
- 546 K. Jothimony and S. Vancheesan, J. Mol. Catal. 52 (1989) 301-4.
- 547 I. M. Baibich, A. E. Gerbase, R. Gomes da Rose, L. Amaral,
- and A. Vasquez, Spectrochim. Acta, Part A 45A (1989) 933-6. 548 S. Yamamoto, R. M. Lewis, H. Hotta, and H. Kuroda Inorg. Chem. 28 (1989) 3091-2.
- 549 H. Adams, N. A. Bailey, G. W. Bentley, and B. E. Mann, J. Chem. Soc., Dalton Trans. (1989) 1831-44.
- 550 S. G. Anema, K. M. Mackay, and B. K. Nicholson, J. Organometal. Chem. 372 (1989) 25-32.
- 551 J. Muller, I. Sonn, and T. Akhnoukh, J. Organometal. Chem. 367 (1989) 133-41
- 552 J. M. Wallis, G. Müller, J. Riede, and H. Schmidbaur, J. Organometal. Chem. 369 (1989) 165-9.
- 553 N. A. Parpiev, M. T. Toshev, Kh. B. Dustov, G. G. Aleksandrov, A. I. Nekhaev, S. D. Alekseeva, and B. I. Kolobkov, Dokl. Akad. Nauk UzSSR, (1988) 47-9; cf. Chem. Abstr. 111:39526m.
- 554 D. Montilo, J. Suades, M. R. Torres, A. Perales, and R.
- Mathieu, J. Chem. Soc., Chem. Comm. (1989) 97-8. 555 A. Ishihara, T. Mitsudo, and Y. Watanabe, J. Orga J. Organometal. Chem. 368 (1989) 199-208.
- 556 D. Lentz and H. Michael, Inorg. Chem. 28 (1989) 3396-8. 557 R. D. Adams, J. E. Babin, J. G. Wang, and W. Wu, Inorg.

Chem. 28 (1989) 703-9.

- 558 P. Mathur and B. H. S. Thimmappa, J. Organometal. Chem. 365 (1989) 363-6.
- 559 M. Tasi, A. K. Powell, and H. Vahrenkamp, Angew. Chem. 101 (1989) 327-8.
- 560 A. B. Antonova, S. V. Kovalenko, A. A. Ioganson, N.A. Delkhina, E. D. Korniets, Yu. T. Struchkov, Yu. A. Slovok-hotov, A. I. Yanovskii, A. G. Ginzburg, and P. V. Petrov-skii, Metalloorg. Khim. 2 (1989) 1090-7; cf. Chem. Abstr. 113:24172k.
- 561 R. D. Adams, J. E. Babin, P. Mathur, K. Natarajan, and J. G. Inorg. Chem. 28 (1989) 1440-5. Wang,
- 562 D. D. Devore, C. Emmerich, J. A. K. Howard, and F. G. A. Stone, J. Chem. Soc., Dalton Trans. (1989) 797-807.
 563 S.-H. Han, J.-S. Song, P. D. Macklin, S. T. Nguyen, G. L.
- Geoffroy, and A. L. Rheingold, Organometallics 8 (1989) 2127-38.
- 564 S. Ching and D. F. Shriver, J. Am. Chem. Soc. 111 (1989) 3238-43.
- 565 S. Ching and D. F. Shriver J. Am. Chem. Soc. 111 (1989) 3243-50.
- 566 S. Ching, M. Sabat, and D. F. Shriver, Organometallics 8 (1989) 1047-58.
- 567 S. Ching, M. P. Jensen, M. Sabat, and D. F. Shriver,
- Organometallics 8 (1989) 1058-63.
- 568 K. A. Sutin, R. Faqgiani, and M. J. McGlinchey, New J. Chem. 12 (1988) 419-26.
- 569 B. Walther, M. Scheer, H. Böttcher, A. Trunschke, H. Ewald, D. Gutschick, H. Miessner, M. Skupin, and G. Vorbeck, Inorg. Chim. Acta 156 (1989) 285-9.
- 570 E. Sappa, D. Belletti, A. Tiripicchio, and M. Tiripicchio-Camellini, J. Organometal. Chem. **359** (1989) 419-28.
- 571 H. Vahrenkamp, J. Organometal. Chem. 370 (1989) 65-73.
- 572 J. Granifo and M. E. Vargas, Polyhedron 8 (1989) 1471-5.
- 573 W. Bernhardt, H. T. Schacht, and H. Vahrenkamp, Z. Naturforsch., B: Chem. Sci. 44 (1989) 1060-6.
- 574 H. T. Schacht and H. Vahrenkamp, Chem. Ber. 122 (1989) 2239-44.
- 575 A. F. Hill, F. Marken, B. A. Nasir, and F. G. A. Stone, J. Organometal. Chem. 363 (1989) 311-23.
 576 S. J. Etches, I. J. Hart, and F. G. A. Stone, J. Chem. Soc.,
- Dalton Trans. (1989) 2281-7.
- 577 T. A. Pakkanen, J. Pursiainen, T. Venalainen, and T. T. Pakkanen, J. Organometal. Chem. 372 (1989) 129-39.
- 578 C. Mealli, D. M. Proserpio, G. Fachinetti, T. Funaioli, G. Fochi, and P. G. Zanazzi, Inorg. Chem. 28 (1989) 1122-7.
- 579 T. B. Rauchfuss, S. D. Gammon, T. D. Weatherill, and S. R. Wilson, New J. Chem. 12 (1988) 373-5.
- 580 L. V. Rybin, E. A. Petrovskaya, N. A. Shel'tsev, M. V. Tolstaya, and M. I. Rybinskaya, Metalloorg. Khim. 2 (1989) 869-72.
- 581 R. Rumin, F. Petillon, L. Manojlovic-Muir, and K. W. Muir, J. Organometal. Chem. 371 (1989) C9-12. 582 Y. Luo, H. Fu, S. Xue, and Y. Ma, Fenzi Cuihua 3 (1989) 130-
- 8; cf. Chem. Abstr. 112:198766b. 583 A. R. Kudinov, D. V. Muratov, and M. I. Rybinskaya, Metalloorg. Khim. 1 (1988) 1431-2; cf. Chem. Abstr. 112:21111h.
- 584 Q. Cai, B. Zheng, J. Huang, and J. Lu, Jiegou Huaxue 8 (1989) 65-7; cf. Chem. Abstr. 111:68383t.
- 585 X. Yang, J. Huang, and J. Huang, Sci. Sin., Ser. B (Engl.

Ed.) 31 (1988) 1166-71; cf. Chem. Abstr. 112:7663h.

- 586 S. Harris, M. L. Blohm, and W. L. Gladfelter, Inorg. Chem. 28 (1989) 2290-7.
- 587 J. Wang, A. M. Crespi, M. Sabat, S. Harris, C. Woodcock, and D. F. Shriver, Inorg. Chem. 28 (1989) 697-703.
- 588 X. Meng, N. P. Rath, and T. P. Fehlner, J. Am. Chem. Soc. 111 (1989) 3422-3.
- 589 C. E. Housecroft, M. S. Shongwe, and A. L. Rheingold, Organometallics 8 (1989) 2651-8.
- 590 H. Bantel, B. Hansert, A. K. Powell, M. Tasi, and H. Vahrenkamp, Angew. Chem. 101 (1989) 1084-5.
- 591 M. G. Richmond, J. Mol. Catal. **54** (1989) 199-204. 592 H. L. Blonk, J. G. M. Van der Linden, J. J. Steggerda, and J. Jordanov, Inorg. Chim. Acta 158 (1989) 239-43.
- 593 R. Della Pergola, L. Garlaschelli, F. Demartin, M. Manassero, N. Masciocchi, M. Sansoni, and A. Fumagalli, J. Chem. Soc., Dalton Trans. (1989) 1109-15.
- 594 C. K. Schauer, E. J. Voss, M. Sabat, and D. F. Shriver, 111 J. Am. Chem. Soc. (1989) 7662-4.
- 595 J. T. Jager, A. K. Powell, and H. Vahrenkamp, New J. Chem. 12 (1988) 405-8.
- 596 G. Beuter and J. Strahle, Z. Naturforsch., B: Chem. Sci. 44 (1989) 647-52.
- 597 R. D. Adams, G. Chen, and J. G. Wang, Polyhedron 8 (1989) 2521-3.
- 598 R. Bender, P. Braunstein, D. Bayeul, and Y. Dusausoy, Inorg. Chem. 28 (1989) 2381-4.
- 599 R. Khattar, J. Puga, T. P. Fehlner, and A. L. Rheingold, J. Am. Chem. Soc. 111 (1989) 1877-9.
- 600 A. K. Bandyopadhyay, R. Khattar, and T. P. Fehlner, Inorg. Chem. 28 (1989) 4434-6.
- 601 V. E. Lopatin and S. P. Gubin, Izv. Akad. Nauk SSSR, Ser. Khim. (1988) 2875; cf. Chem. Abstr. 112:36112h.
- 602 J. Podlahova, J. Podlaha, A. Jegorov, and J. Hasek, J. Organometal. Chem. 359 (1989) 401-7.
- 603 K. S. Bose, S. A. Chmielewski, P. A. Eldridge, E. Sinn, and B. A. Averill, J. Am. Chem. Soc. 111 (1989) 8953-4.
- 604 J. Huang, Q. Cai, M. He, M. Huang, and J. Lu, Wuli Huaxue Xuebao, 4 (1988) 531-4; cf. Chem. Abstr. 111:195007y.
- 605 I. L. Eremenko, A. A. Pasynskii, A. S. Abdulaev, A. S. Aliev, B. Orazsakhatov, S. A. Sleptsova, A. I. Nekhaev, V. E. Shklover, and Yu. t. Struchkov, J. Organometal. Chem. 365 (1989) 297-307.
- 606 A. R. Suarez, M. R. Mazzieri, and A. G. Suarez, J. Am. Chem. Soc. 111 (1989) 763-4.